Researchers at MIT developed a security protocol that leverages quantum mechanics to guarantee secure data transmission during deep-learning computations. The protocol encodes data into laser light, making it impossible for attackers to copy or intercept information without detection.
Researchers investigate underlying mechanisms of photonic phase transitions in one-dimensional Rayleigh scattering systems, uncovering unique laws governing the phenomenon. They propose a model that reveals an analogy between temperature and disorder in magnetic spin glass phases, shedding light on universal phase transition mechanisms.
Researchers have developed a new technique to study anisotropic materials, capturing full complexity of light behavior in these materials. The method revealed detailed insights into how light scatters differently along various directions within materials, allowing retrieval of scattering tensor coefficients.
Apple iPhone 17 Pro
Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.
Researchers at the University of Warsaw developed a quantum-inspired super-resolving spectrometer that uses latent information carried by photons to improve spectral resolution. The device offers over a two-fold improvement in resolution compared to standard approaches and has potential applications in optical and quantum networks.
Scientists at Chalmers University of Technology have successfully combined nonlinear and high-index nanophotonics in a single nanoobject, creating a disk-like structure with unique optical properties. The discovery has great potential for developing efficient and compact nonlinear optical devices.
A novel approach to overcome limitations of traditional methods, NeuPh uses local conditional neural fields to reconstruct high-resolution phase information from low-resolution measurements. It provides robust resolution enhancement and outperforms existing models in accuracy.
Researchers have developed a new engineering approach to on-chip light sources, enabling the widespread adoption of photonic chips in consumer electronics. The innovation involves growing high-quality multi-quantum well nanowires using a novel facet engineering approach, which enables precise control over the diameter and length of the...
Scientists have created perovskite crystals with predefined shapes to serve as waveguides, couplers, and modulators in integrated photonic circuits. The edge lasing effect is associated with exciton-polariton condensates, which exhibit nonlinear effects, enabling applications in quantum computing.
Apple MacBook Pro 14-inch (M4 Pro)
Apple MacBook Pro 14-inch (M4 Pro) powers local ML workloads, large datasets, and multi-display analysis for field and lab teams.
Researchers from Sandia National Laboratories have successfully miniaturized a motion sensor using silicon photonic microchip components, achieving unprecedented accuracy and reducing size by a thousand times. This breakthrough enables precise navigation even in GPS-denied areas, posing significant national security risks.
Researchers have developed a chip-based quantum system that can detect unauthorized access in quantum communication, using entangled four-photon states. This technology has the potential to strengthen data security and protect sensitive information from cyber threats.
A new type of fluorescence microscope has been developed with a resolution better than five nanometres, enabling the capture of even the tiniest cell structures. This breakthrough allows researchers to visualize fine tubes in cells that are only around seven nanometres wide.
Researchers developed a new 2D quantum sensing chip using hexagonal boron nitride that can simultaneously detect temperature anomalies and magnetic fields in any direction. The chip is significantly thinner than current quantum technology for magnetometry, enabling cheaper and more versatile sensors.
Rigol DP832 Triple-Output Bench Power Supply
Rigol DP832 Triple-Output Bench Power Supply powers sensors, microcontrollers, and test circuits with programmable rails and stable outputs.
A groundbreaking approach inspired by bio-inspired neuromorphic imaging and speckle correlography has unveiled a revolutionary technique for optical image encryption. This method leverages computational neuromorphic imaging to encrypt images into event-stream ciphertexts, significantly enhancing security and complexity.
A breakthrough near-infrared photobiomodulation technique has shown potential in suppressing neuroinflammation and promoting microglia cell proliferation. The study's findings suggest that LEDs with broadband NIR emission could offer a cost-effective, side-effect-free treatment option for millions suffering from neurodegenerative disea...
Researchers at the University of Melbourne have developed a compact, high-efficiency metasurface-enabled solenoid beam that can draw particles toward it. The technology has the potential to reduce pain and trauma associated with current biopsy methods.
The team achieves nanofabrication of nanostructures buried deep inside silicon wafers, enabling sub-wavelength and multi-dimensional control directly inside the material. The breakthrough opens up new possibilities for developing nano-scale systems with unique architectures.
The team created microbeads that emit various colors of light depending on the illuminating light and bead size, offering a wide range of applications. The use of plant-derived materials allows for low-cost and energy-efficient synthesis, making them an attractive alternative to conventional luminescent devices.
Davis Instruments Vantage Pro2 Weather Station
Davis Instruments Vantage Pro2 Weather Station offers research-grade local weather data for networked stations, campuses, and community observatories.
Researchers at Max Planck Institute propose a new method for implementing neural networks with optical systems, which could lead to faster and more energy-efficient alternatives. The approach allows for parallel computations in high speeds limited by the speed of light, and can be applied to various physically different systems.
Researchers developed artificial maple seeds that can be controlled using light to monitor environmental conditions, such as pH levels and heavy metal concentrations. The technology has potential applications in search-and-rescue, endangered species studies, and infrastructure monitoring.
Researchers at Stanford University have developed a chip-scale Titanium-sapphire laser, four orders of magnitude smaller and three orders less expensive than traditional lasers. This breakthrough enables mass production on wafers, potentially thousands of lasers per disc, democratizing access to these powerful tools.
GQ GMC-500Plus Geiger Counter
GQ GMC-500Plus Geiger Counter logs beta, gamma, and X-ray levels for environmental monitoring, training labs, and safety demonstrations.
Researchers aim to create integrated photonics on chips using an atom-thin silicon-germanium alloy, which could lead to computers and mobile phones that use less electricity and operate faster. The new material has the potential to emit light, reducing heat and energy consumption in data centers.
Scientists at uOttawa have developed Fourier Quantum Process Tomography (FQPT) to validate quantum circuit performance. The technique allows for high-accuracy characterization with minimal measurements, enabling significant advancements in quantum computing.
Researchers have developed a new 3D method for fast-moving object tracking at unprecedented speeds, with potential applications in autonomous driving, industrial inspection and security surveillance. The approach uses single-pixel imaging to calculate the object's position in real-time, reducing data storage and computational costs.
Researchers have developed a new photonic chip that can process, transmit and reconstruct images in nanoseconds, eliminating optical-electronic conversions. This technology holds promise for revolutionizing edge intelligence in machine vision applications.
CalDigit TS4 Thunderbolt 4 Dock
CalDigit TS4 Thunderbolt 4 Dock simplifies serious desks with 18 ports for high-speed storage, monitors, and instruments across Mac and PC setups.
Researchers developed metamaterials-enhanced MRI technology using coaxial cables to boost signal-to-noise ratio. The innovative coils address patient discomfort and cost by providing adaptable, form-fitting designs for various anatomical sites.
Researchers have developed a compact, palm-sized light field camera that simultaneously captures 3D spatial and spectral information in a single snapshot. The camera uses inkjet printing to create its key optical components, enabling efficient manufacturing and customization.
Researchers developed a chip-scale erbium-doped waveguide laser that approaches fiber-based laser performance, featuring wide wavelength tunability and stable output. The breakthrough enables low-cost, portable systems for various applications including telecommunications, medical diagnostics, and consumer electronics.
The researchers developed a single millimeter-scale photonic chip that emits reconfigurable beams of light into a well of resin, curing into a solid shape when exposed to the beam's wavelength. Shapes can be fully formed in a matter of seconds using this chip-based 3D printer.
Researchers demonstrate a new way to confine infrared light using thin-film oxide membranes, which outperform bulk crystals in resolution and frequency maintenance. The technique has potential applications in photonics, sensors, and thermal management.
Apple AirPods Pro (2nd Generation, USB-C)
Apple AirPods Pro (2nd Generation, USB-C) provide clear calls and strong noise reduction for interviews, conferences, and noisy field environments.
Researchers have developed a groundbreaking solution to overcome DAC challenges, achieving record-breaking data transmission performance. The innovative approach enables the transmission of signals at rates exceeding 124 GBd PAM-4/6 and 112 GBd PAM-8 over long distances using low-cost digital-to-analog converters.
A team of researchers successfully demonstrated the principles of gravity-mediated entanglement in a photonic quantum simulation. This breakthrough provides crucial insights into the nature of gravity and its interaction with quantum mechanics.
Researchers at TMOS have developed a new infrared filter thinner than cling wrap, which can be integrated into everyday eyewear, allowing users to view both visible and infrared light spectra. This breakthrough miniaturizes night vision technology, opening up new applications in safety, surveillance, and biology.
SAMSUNG T9 Portable SSD 2TB
SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.
A groundbreaking study introduces a method for sorting vector structured beams with spin-multiplexed diffractive metasurfaces, promising significant advancements in optical communication and quantum computing. This technology enables precise control over complex light beams, opening new avenues for scientific exploration.
Researchers have developed a new device that can determine photon pair properties in a single shot, improving precision and accuracy in quantum technologies. The metasurface-enabled multiport interferometer reduces size, weight, and power while increasing reliability.
Researchers at the University of Rochester developed a new microcomb laser design that provides low power efficiency, high tunability, and easy operation. The simplified approach enables direct control over the comb with a single switch, opening up potential applications in telecommunications systems, LiDAR for autonomous vehicles.
Garmin GPSMAP 67i with inReach
Garmin GPSMAP 67i with inReach provides rugged GNSS navigation, satellite messaging, and SOS for backcountry geology and climate field teams.
A new approach uses artificial intelligence to turn low-quality images into high-quality ones, enhancing the image quality of metalens cameras. This technology could make these cameras viable for intricate microscopy applications and mobile devices.
A new device uses small amounts of light to process information, offering significant energy improvements over conventional optical switches. This technology could enable quantum communications, providing a promising alternative for data security against rising cyberattacks.
A new, affordable sensor technology can detect lead concentrations as low as one part per billion, making it a significant step forward in addressing global health issues. The handheld device can be used for on-site monitoring and requires only a droplet of water.
Researchers have developed new optical tweezers that can stably trap large and irregularly shaped particles using contour-tracking technology. This advancement could expand light-based trapping to a wider range of objects, including groups of cells, bacteria, and microplastics.
Canadian researchers have developed a new 3D printing method called blurred tomography that can rapidly produce microlenses with commercial-level optical quality. The method uses projected light to solidify a light-sensitive resin in specific areas, allowing for rapid prototyping of optical components.
Kestrel 3000 Pocket Weather Meter
Kestrel 3000 Pocket Weather Meter measures wind, temperature, and humidity in real time for site assessments, aviation checks, and safety briefings.
A new, low-cost, high-efficiency photonic integrated circuit has been developed using lithium tantalate technology. The breakthrough platform offers scalable and cost-effective manufacturing of advanced electro-optical PICs, paving the way for volume manufacturing.
Researchers from the University of Tokyo have developed a novel approach to manage waste heat in microcircuits by adding a tiny coating of silicon dioxide. This increases the rate of heat dissipation, allowing for faster cooling and potentially leading to smaller and cheaper electronic devices.
Scientists at Harvard John A. Paulson School of Engineering and Applied Sciences have developed a compact, single-shot polarization imaging system that can provide a complete picture of polarization. The system uses two thin metasurfaces to capture the most complete polarization response of an object in real-time.
Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D images with a low-power laser. The system uses single-photon detection techniques to measure time-of-flight, enabling highly accurate 3D mapping of terrain and objects even in challenging environments.
DJI Air 3 (RC-N2)
DJI Air 3 (RC-N2) captures 4K mapping passes and environmental surveys with dual cameras, long flight time, and omnidirectional obstacle sensing.
Researchers at Penn State have made light effectively experience a magnetic field within a photonic crystal structure. This breakthrough could lead to more efficient lasers and other photonic technologies by increasing the interaction between light and matter.
A research team has successfully created a new dimension in photonic machine learning by incorporating sound waves, enabling the creation of reconfigurable neuromorphic building blocks. This innovation has the potential to revolutionize computing tasks by providing high-speed and large-capacity solutions.
Researchers at UPV and iPRONICS have developed a groundbreaking photonic chip that can implement twelve basic functionalities required by various systems. This chip allows on-demand programming and interconnecting wireless and photonic segments of communication networks, increasing efficiency and reducing bottlenecks.
Researchers demonstrate how a simple mirror design can amplify radiative cooling processes for buildings. The mirror structure effectively guides thermal radiation towards the most transmissive portion of the atmosphere, increasing cooling power.
Creality K1 Max 3D Printer
Creality K1 Max 3D Printer rapidly prototypes brackets, adapters, and fixtures for instruments and classroom demonstrations at large build volume.
Researchers have developed a method to improve the optoelectronic properties of InP-based QDs, resulting in high-brightness green InP-based QLEDs. The new synthesis strategy uses zinc myristate to protect the core surface from oxidation, leading to improved quantum yields and luminescence performance.
A team of scientists developed a photonic scheme to extract key features from broadband RF signals, reducing data rate by 4 times while maintaining high target recognition accuracy. The system achieves 97.5% accuracy and outperforms one-dimensional feature extraction.
Researchers have developed a technique to focus ultra-intense ultrashort lasers onto a single wavelength using rotational hyperbolic mirrors. This breakthrough enables the highest intensity condition for ultra-intense ultrashort lasers, revolutionizing strong-field laser physics applications.
A new approach uses a smartphone screen to create full-color 3D holographic images by leveraging computer-generated holography (CGH) and an optical component called a spatial light modulator. The method has the potential to enhance near-eye displays in virtual reality headsets, creating more realistic and interactive user experiences.
GoPro HERO13 Black
GoPro HERO13 Black records stabilized 5.3K video for instrument deployments, field notes, and outreach, even in harsh weather and underwater conditions.
Rice University engineers have demonstrated a way to control the optical properties of T centers, paving the way toward leveraging these point defects for building quantum nodes. By embedding a T center in a photonic integrated circuit, they increased the collection efficiency for single photon emission by two orders of magnitude.
The researchers achieved 20-level intermediate states of phase change materials using a micron-scale laser writing system. This allows for the demonstration of ultra-high flexibility in phase modulation and potential applications in neuromorphic photonics, optical computing, and reconfigurable metasurfaces.
Researchers have developed a miniaturized optical sensor that can detect glucose levels in human blood plasma with comparable sensitivity to laboratory-based sensors. The device operates wirelessly using a coin battery and has demonstrated its viability in detecting glucose levels between 50-400mg/dL.
Scientists have developed a new method to manipulate light using synthetic dimension dynamics, enabling precise control over light propagation and confinement. This breakthrough has significant implications for applications such as mode lasing, quantum optics, and data transmission.
A novel approach estimates metabolic activity and infers blood glucose levels from near-infrared measurements in commercial smartphones and smartwatches. The phase delay between oxyhemoglobin and deoxyhemoglobin signals closely relates to oxygen consumption during cardiac cycles, serving as a gauge for metabolism.
AmScope B120C-5M Compound Microscope
AmScope B120C-5M Compound Microscope supports teaching labs and QA checks with LED illumination, mechanical stage, and included 5MP camera.
Scientists from CNR Nanotec and the University of Warsaw created a new method to simulate interactions between artificial atoms by forming macroscopic coherent states. They used optically tailored quantum droplets of light that became bound together, enabling stable and long-lived polariton fluids with unprecedented coherence scales.
The Zero-Energy Switchable Radiative Cooler (ZESRC) is a temperature-responsive solution that balances building temperatures sustainably. Field experiments demonstrate its effectiveness across seasons, reducing energy consumption by 14.3% compared to other devices.
Researchers have developed a new way to control and manipulate optical signals by embedding a liquid crystal layer into waveguides created with direct laser writing. The new devices enable electro-optical control of polarization, which could open new possibilities for chip-based devices and complex photonic circuits.
Celestron NexStar 8SE Computerized Telescope
Celestron NexStar 8SE Computerized Telescope combines portable Schmidt-Cassegrain optics with GoTo pointing for outreach nights and field campaigns.