Bluesky Facebook Reddit Email

Life Sciences

Comprehensive exploration of living organisms, biological systems, and life processes across all scales from molecules to ecosystems. Encompasses cutting-edge research in biology, genetics, molecular biology, ecology, biochemistry, microbiology, botany, zoology, evolutionary biology, genomics, and biotechnology. Investigates cellular mechanisms, organism development, genetic inheritance, biodiversity conservation, metabolic processes, protein synthesis, DNA sequencing, CRISPR gene editing, stem cell research, and the fundamental principles governing all forms of life on Earth.

447,757 articles | 2542 topics

Health and Medicine

Comprehensive medical research, clinical studies, and healthcare sciences focused on disease prevention, diagnosis, and treatment. Encompasses clinical medicine, public health, pharmacology, epidemiology, medical specialties, disease mechanisms, therapeutic interventions, healthcare innovation, precision medicine, telemedicine, medical devices, drug development, clinical trials, patient care, mental health, nutrition science, health policy, and the application of medical science to improve human health, wellbeing, and quality of life across diverse populations.

431,843 articles | 751 topics

Social Sciences

Comprehensive investigation of human society, behavior, relationships, and social structures through systematic research and analysis. Encompasses psychology, sociology, anthropology, economics, political science, linguistics, education, demography, communications, and social research methodologies. Examines human cognition, social interactions, cultural phenomena, economic systems, political institutions, language and communication, educational processes, population dynamics, and the complex social, cultural, economic, and political forces shaping human societies, communities, and civilizations throughout history and across the contemporary world.

260,756 articles | 745 topics

Physical Sciences

Fundamental study of the non-living natural world, matter, energy, and physical phenomena governing the universe. Encompasses physics, chemistry, earth sciences, atmospheric sciences, oceanography, materials science, and the investigation of physical laws, chemical reactions, geological processes, climate systems, and planetary dynamics. Explores everything from subatomic particles and quantum mechanics to planetary systems and cosmic phenomena, including energy transformations, molecular interactions, elemental properties, weather patterns, tectonic activity, and the fundamental forces and principles underlying the physical nature of reality.

257,913 articles | 1552 topics

Applied Sciences and Engineering

Practical application of scientific knowledge and engineering principles to solve real-world problems and develop innovative technologies. Encompasses all engineering disciplines, technology development, computer science, artificial intelligence, environmental sciences, agriculture, materials applications, energy systems, and industrial innovation. Bridges theoretical research with tangible solutions for infrastructure, manufacturing, computing, communications, transportation, construction, sustainable development, and emerging technologies that advance human capabilities, improve quality of life, and address societal challenges through scientific innovation and technological progress.

225,386 articles | 998 topics

Scientific Community

Study of the practice, culture, infrastructure, and social dimensions of science itself. Addresses how science is conducted, organized, communicated, and integrated into society. Encompasses research funding mechanisms, scientific publishing systems, peer review processes, academic ethics, science policy, research institutions, scientific collaboration networks, science education, career development, research programs, scientific methods, science communication, and the sociology of scientific discovery. Examines the human, institutional, and cultural aspects of scientific enterprise, knowledge production, and the translation of research into societal benefit.

193,043 articles | 157 topics

Space Sciences

Comprehensive study of the universe beyond Earth, encompassing celestial objects, cosmic phenomena, and space exploration. Includes astronomy, astrophysics, planetary science, cosmology, space physics, astrobiology, and space technology. Investigates stars, galaxies, planets, moons, asteroids, comets, black holes, nebulae, exoplanets, dark matter, dark energy, cosmic microwave background, stellar evolution, planetary formation, space weather, solar system dynamics, the search for extraterrestrial life, and humanity's efforts to explore, understand, and unlock the mysteries of the cosmos through observation, theory, and space missions.

29,662 articles | 175 topics

Research Methods

Comprehensive examination of tools, techniques, methodologies, and approaches used across scientific disciplines to conduct research, collect data, and analyze results. Encompasses experimental procedures, analytical methods, measurement techniques, instrumentation, imaging technologies, spectroscopic methods, laboratory protocols, observational studies, statistical analysis, computational methods, data visualization, quality control, and methodological innovations. Addresses the practical techniques and theoretical frameworks enabling scientists to investigate phenomena, test hypotheses, gather evidence, ensure reproducibility, and generate reliable knowledge through systematic, rigorous investigation across all areas of scientific inquiry.

21,889 articles | 139 topics

Mathematics

Study of abstract structures, patterns, quantities, relationships, and logical reasoning through pure and applied mathematical disciplines. Encompasses algebra, calculus, geometry, topology, number theory, analysis, discrete mathematics, mathematical logic, set theory, probability, statistics, and computational mathematics. Investigates mathematical structures, theorems, proofs, algorithms, functions, equations, and the rigorous logical frameworks underlying quantitative reasoning. Provides the foundational language and tools for all scientific fields, enabling precise description of natural phenomena, modeling of complex systems, and the development of technologies across physics, engineering, computer science, economics, and all quantitative sciences.

3,023 articles | 113 topics

Apple iPhone 17 Pro

Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.

AI-based image analysis automatically detects serious heart condition

Researchers developed an AI method to automatically detect plaque erosion in heart arteries using OCT images. The new technique uses neural networks and post-processing algorithms to predict regions of possible plaque erosion and refine the initial prediction based on clinically interpretable features.

Breakthrough paves way for photonic sensing at the ultimate quantum limit

A team of physicists has developed a way to perform high precision measurements without relying on special entangled states of light. The breakthrough uses ring resonators, which can be mass manufactured using standard processes, and enables the creation of chip-scale photonic sensors operating at the quantum limit.

Garmin GPSMAP 67i with inReach

Garmin GPSMAP 67i with inReach provides rugged GNSS navigation, satellite messaging, and SOS for backcountry geology and climate field teams.

Researchers take optical coherence tomography to the next level

The new technique, 3D optical coherence refraction tomography (3D OCRT), produces highly detailed images revealing features difficult to observe with traditional OCT. It has the potential for biomedical research and eventually more accurate medical diagnostic imaging.

Yang wins Friedrich Wilhelm Bessel Research Award

Lan Yang, a leading researcher in photonic devices, has been selected for the award due to her exceptional academic achievements. She is recognized as one of the most-cited researchers in her field, with work cited nearly 17,500 times.

Halting a wave in its tracks

By pairing two waveguides, one with an ill-defined topology and another with a well-defined one, researchers created a topological singularity that can halt waves in their tracks. This phenomenon has potential applications in energy harvesting and enhancing nonlinear effects.

SAMSUNG T9 Portable SSD 2TB

SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.

Diamond mirrors for high-powered lasers

Researchers at Harvard John A. Paulson School of Engineering and Applied Sciences have developed a single-material diamond mirror that withstood a 10-kilowatt Navy laser without damage. The mirror's unique nanostructure design makes it 98.9% reflective, potentially enabling more robust high-power lasers for various applications.

GQ GMC-500Plus Geiger Counter

GQ GMC-500Plus Geiger Counter logs beta, gamma, and X-ray levels for environmental monitoring, training labs, and safety demonstrations.

New nanomechanical oscillators with record-low loss

Scientists have created nanomechanical resonators with extremely high quality factors using a regular polygon design, leading to compact devices for sensing weak forces. The new design allows for precision force sensing with sensitivity approaching state-of-the-art atomic force microscopes.

Researchers create flat magic window with liquid crystals

Scientists have developed a transparent device that produces a hidden image when light shines on it, using liquid crystals to recreate an ancient light trick. The technology has the potential to enable reconfigurable displays and stable 3D images.

Nikon Monarch 5 8x42 Binoculars

Nikon Monarch 5 8x42 Binoculars deliver bright, sharp views for wildlife surveys, eclipse chases, and quick star-field scans at dark sites.

Rice ‘metalens’ could disrupt vacuum UV market

Researchers at Rice University have created a 'metalens' that transforms long-wave UV-A into a focused output of vacuum UV radiation. The technology uses nanophotonics to impart a phase shift on incoming light, redirecting it and generating VUV without the need for specialized equipment.

Ultrafast all-optical random bit generator

Researchers proposed and experimentally demonstrated an all-optical random bit generation method using chaotic pulses quantized in the optical domain. This method generated a 10 Gb/s random bit stream, potentially operable at higher rates by exploiting ultrafast fiber response.

In Einstein’s footsteps and beyond

Researchers discovered near-zero index materials where light's momentum becomes zero, altering fundamental processes like atomic recoil and Heisenberg's uncertainty principle. These materials could enable perfect cloaking and have potential applications in quantum computing and optics.

Sky & Telescope Pocket Sky Atlas, 2nd Edition

Sky & Telescope Pocket Sky Atlas, 2nd Edition is a durable star atlas for planning sessions, identifying targets, and teaching celestial navigation.

Researchers demonstrate label-free super-resolution microscopy

A new measurement and imaging approach resolves nanostructures smaller than the diffraction limit without dyes or labels, using polarization and angle-resolved images of transmitted light. The method measures particle size and position with high accuracy, closing the gap between conventional microscopes and super-resolution techniques.

New polymer materials make fabricating optical interconnects easier

Researchers developed new polymer materials with adjustable refractive index, enabling easy creation of optical interconnects between photonic chips and board-level circuits. The technology has the potential to boost Internet data center efficiency by reducing power consumption and heat generation.

Sony Alpha a7 IV (Body Only)

Sony Alpha a7 IV (Body Only) delivers reliable low-light performance and rugged build for astrophotography, lab documentation, and field expeditions.

First integrated laser on lithium niobate chip

Harvard researchers have successfully integrated a high-power laser onto a lithium niobate chip, a major breakthrough in the development of high-performance chip-scale optical systems. The integration enables the creation of fully integrated spectrometers, optical remote sensing, and efficient frequency conversion for quantum networks.

Vectorial metrics reveal complex optical information

Researchers developed a new framework to extract meaningful vectorial metrics from Mueller matrix elements, providing insights into exotic material characterization and precise cancer boundary detection. The framework establishes a universal metric for calculating different physical properties of target objects.

Direct generation of complex structured light

Researchers have developed a direct method for generating complex structured light through intracavity nonlinear frequency conversion. This technique uses transverse mode locking to produce vortex beams, which are then converted into second-harmonic generation beams with distinct structural characteristics. The study demonstrates the p...

Aranet4 Home CO2 Monitor

Aranet4 Home CO2 Monitor tracks ventilation quality in labs, classrooms, and conference rooms with long battery life and clear e-ink readouts.

Turning any camera into a polarization camera

Researchers developed a metasurface attachment that can turn any camera into a polarization camera, capturing light's polarization at every pixel. This innovation benefits various fields like face recognition, self-driving cars and remote sensing, revealing hidden details and features.

‘Self-driving’ lab speeds up research, synthesis of energy materials

Researchers at NC State University have developed a 'self-driving lab' that uses artificial intelligence and fluidic systems to advance our understanding of metal halide perovskite nanocrystals. The technology can autonomously dope MHP nanocrystals, adding manganese atoms on demand, allowing for faster control over properties.

Controlling how fast graphene cools down

Researchers have demonstrated control of graphene's relaxation time, allowing for novel functionalities in devices such as light detectors and modulators. This work paves the way for the development of ultrafast optical devices with potential applications in photonics and telecommunications.

THz–fingerprint vibrational spectroscopy at an ultrafast spectral rate

Researchers developed a new technique called dual-detection impulsive vibrational spectroscopy (DIVS) to measure two distinct types of vibrational signals. DIVS enables synchronous measurement of THz- and fingerprint region vibrations, offering high temporal resolution for real-time chemical analysis.

Rigol DP832 Triple-Output Bench Power Supply

Rigol DP832 Triple-Output Bench Power Supply powers sensors, microcontrollers, and test circuits with programmable rails and stable outputs.

Deep learning poised to improve breast cancer imaging

Researchers developed a new deep learning algorithm that allows for real-time reconstruction of images combining optical and magnetic resonance imaging data. The algorithm, Z-Net, enables faster image generation and can be trained with simulated data, improving breast cancer detection.

More sensitive X-ray imaging

Researchers at MIT have improved the efficiency of scintillators by up to tenfold and potentially even a hundredfold by creating nanoscale configurations. This could lead to better medical diagnostic X-rays, reduced dose exposure, and improved image quality.

Apple AirPods Pro (2nd Generation, USB-C)

Apple AirPods Pro (2nd Generation, USB-C) provide clear calls and strong noise reduction for interviews, conferences, and noisy field environments.

World-first: Speed of sound used to measure elasticity of materials

Researchers at the University of Nottingham have developed a groundbreaking technology to measure the microscopic elasticity of materials. By analyzing the speed of sound across the material's surface, they can reveal the orientation and inherent stiffness of small crystals, which is essential for material performance.

Apple Watch Series 11 (GPS, 46mm)

Apple Watch Series 11 (GPS, 46mm) tracks health metrics and safety alerts during long observing sessions, fieldwork, and remote expeditions.

Mechanical control of a reconfigurable intelligent surface

A mechanical RIS has been developed with high reconfiguration degree of freedom, low power consumption, and real-time dynamic control capabilities. It uses a robust control method to determine the rotation angle of each meta-atom and offers a new energy-saving and environmentally friendly alternative for wireless communications systems.

€16 million for photonic quantum processors

A €16 million project, PhotonQ, is developing a photonic quantum processor to process qubits and reduce error rates. The processor will enable rapid scaling to relevant qubit numbers for practical applications.

Shining a light on synthetic dimensions

Scientists have developed a way to create synthetic dimensions using light, allowing for more degrees of freedom in manipulating properties. The breakthrough enables the fabrication of compact devices with reduced complexity, opening up new possibilities for advanced technologies.

Seeing inside cells with an integrated nanowire probe

Researchers developed a multifunctional microfiber probe for real-time monitoring of cellular molecules and changes in cell morphology. The nanowire probe enabled sensitive detection of refractive index distribution in single living cells during apoptosis.

Apple MacBook Pro 14-inch (M4 Pro)

Apple MacBook Pro 14-inch (M4 Pro) powers local ML workloads, large datasets, and multi-display analysis for field and lab teams.

Terahertz radiation source: Compact and simple

A novel, simple, and extremely compact terahertz radiation source has been developed at TU Wien, enabling high intensities and small size. The technology uses resonant-tunnelling diodes and can be used in various applications such as material testing, airport security control, radio astronomy, and chemical sensors.

Organic aggregates: new insights on white light

Research reveals organic aggregates can emit polychromic and white light with high efficiency, opening up new avenues for OLEDs and encryption. However, more work is needed to fully understand the underlying mechanisms and improve performance.

CalDigit TS4 Thunderbolt 4 Dock

CalDigit TS4 Thunderbolt 4 Dock simplifies serious desks with 18 ports for high-speed storage, monitors, and instruments across Mac and PC setups.

Integrated photonics for quantum technologies

Researchers outline potential and challenges of integrated photonic circuits for quantum technologies, highlighting need for investment in education and infrastructure. The paper provides a comprehensive overview of current state and future applications of integrated photonics for quantum technologies.

Using magnets to toggle nanolasers leads to better photonics

A magnetic field can be used to switch nanolasers on and off, leading to unprecedented robustness in signal processing. The new control mechanism may prove useful in a range of devices that make use of optical signals, particularly in topological photonics.

Engineering high-dimensional quantum states

A team of researchers demonstrates an adaptive optimization protocol that can engineer arbitrary high-dimensional quantum states, overcoming limitations due to noise and experimental imperfections. The protocol uses measured agreement between produced and target state to tune experimental parameters.

GoPro HERO13 Black

GoPro HERO13 Black records stabilized 5.3K video for instrument deployments, field notes, and outreach, even in harsh weather and underwater conditions.

Polariton parametric oscillator in perovskite microcavity

Researchers have developed a room-temperature perovskite polariton parametric oscillator, enabling scalable and low-threshold nonlinear devices. This breakthrough offers possibilities for the development of cost-effective and integrated polaritonic devices.

Colour-changing magnifying glass gives clear view of infrared light

Researchers at the University of Cambridge have developed a new concept for detecting infrared light by converting it into visible light, easily detectable by modern cameras. This innovation enables the detection of mid-infrared light using molecular frequency upconversion with dual-wavelength hybrid nanoantennas.

A pair of gold flakes creates a self-assembled resonator

Scientists at Chalmers University of Technology discovered a way to create a stable resonator using two parallel gold flakes in a salty aqueous solution. The structure can be manipulated and used as a chamber for investigating materials and their behavior, with potential applications in physics, biosensors, and nanorobotics.

Creality K1 Max 3D Printer

Creality K1 Max 3D Printer rapidly prototypes brackets, adapters, and fixtures for instruments and classroom demonstrations at large build volume.

A simpler design for quantum computers

Researchers at Stanford University have proposed a new design for photonic quantum computers that can operate at room temperature and require fewer components. The proposed design uses a laser to manipulate an atom, which then modifies the state of photons via quantum teleportation, enabling the creation of complex calculations.

Shifting colors for on-chip photonics

On-chip frequency shifters in the gigahertz range enable precise color shifting for high-speed optical communication. This innovation has significant implications for the development of quantum computers and future network infrastructure.

Celestron NexStar 8SE Computerized Telescope

Celestron NexStar 8SE Computerized Telescope combines portable Schmidt-Cassegrain optics with GoTo pointing for outreach nights and field campaigns.