A team from UNIGE developed a new approach to characterise quantum states without direct measurements, using transport measurements based on particle flow. This method opens up possibilities for open quantum devices and sensors in various fields, including healthcare and geophysics.
Researchers at Texas A&M University are building highly sensitive detectors to explore dark matter and energy. The team's work builds on previous breakthroughs in detecting low-mass particles, and they aim to find ways to amplify signals that were previously buried in noise.
Apple iPhone 17 Pro
Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.
A NPS doctoral student has been recognized for his groundbreaking research on quantum sensing, aiming to detect minuscule changes in mass from afar. The project involves building an atomic fountain, which will enable sensitivity to gravity nine decimal places of precision.
Researchers at Princeton University developed a diamond-based quantum sensor that uncovers rich new information about magnetic phenomena at the atomic scale. The technique provides key insight into materials like graphene and superconductors.
A new study by the University of Oxford finds that the energy cost of reading a quantum clock far outweighs the cost of running it, with implications for future quantum technologies. The researchers discovered that the act of measurement itself is a significant source of entropy in quantum timekeeping.
University of Queensland researchers have developed a microscopic 'ocean' on a silicon chip, allowing for the study of wave dynamics at an unprecedented scale. The device, made with superfluid helium, enables the observation of striking phenomena, including waves that lean backward and shock fronts.
A new paper in Science reports proven quantum advantage, where entangled light lets researchers learn a system's noise with very few measurements. The experiment cuts the number of measurements needed by an enormous factor, from 20 million years to just 15 minutes.
DJI Air 3 (RC-N2)
DJI Air 3 (RC-N2) captures 4K mapping passes and environmental surveys with dual cameras, long flight time, and omnidirectional obstacle sensing.
Researchers at the University of Sydney have developed a new strategy to precisely measure position and momentum simultaneously, sacrificing some global information for finer detail. This breakthrough could enable ultra-precise quantum sensors for navigation, medicine, astronomy, and fundamental physics applications.
Researchers at Washington University in St. Louis have created quantum sensors that can measure stress and magnetism in materials under pressure exceeding 30,000 times the atmospheric pressure. These breakthrough sensors offer a new frontier for studying high-pressure phenomena in fields like astronomy, geology, and superconductivity.
Kyoto University researchers successfully developed an entangled measurement method for the W state, enabling efficient identification of entangled states. The team used a photonic quantum circuit and demonstrated its feasibility with three-photon W states.
Researchers developed a new AI method called Deep Loop Shaping to quiet unwanted noise in LIGO's detectors, achieving 30-100 times better performance than traditional methods. This technology will help improve LIGO's ability to detect bigger black holes and build next-generation gravitational-wave detectors.
Researchers from Delft University of Technology have successfully measured the nuclear spin of an on-surface atom in real time, achieving 'single-shot readout'. This breakthrough enables control over the magnetic nucleus and opens up possibilities for quantum sensing at the atomic scale.
Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C)
Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C) keeps Macs, tablets, and meters powered during extended observing runs and remote surveys.
Researchers at the University of Vermont found an exact solution to a model that behaves as a damped quantum harmonic oscillator. This discovery has significant implications for ultra-precision sensor technologies and the measurement of quantum distances.
Researchers have discovered a simple way to protect atoms from losing information by shining a single laser beam on them, reducing spin relaxation rates. The technique uses light to subtly shift atomic energy levels, aligning spins and keeping them in sync even as they collide with each other or surroundings.
Researchers from The University of Osaka develop a method to prepare high-fidelity 'magic states' for use in quantum computers with less overhead and unprecedented accuracy. This breakthrough aims to overcome the significant obstacle of noise in quantum systems, which can ruin computer setups.
Physicists at the University of Colorado Boulder have developed a new type of atom interferometer that can measure acceleration in three dimensions. The device, which employs six lasers and artificial intelligence, has the potential to revolutionize navigation technology by providing accurate measurements in complex environments.
SAMSUNG T9 Portable SSD 2TB
SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.
Researchers create new quantum biosensor using diamond nanoparticles and specially engineered shell, outperforming previous attempts. The breakthrough sheds light on a longstanding mystery in quantum materials and shows up to fourfold improvements in spin coherence.
Researchers achieved a type of coupling between artificial atoms and photons that could enable readout and processing of quantum information in a few nanoseconds. This breakthrough demonstrates the fundamental physics behind nonlinear light-matter coupling, a crucial step toward realizing fault-tolerant quantum computing.
Researchers have demonstrated a new quantum sensing technique that surpasses conventional methods by counteracting the limitation of decoherence. The study's coherence-stabilized protocol allows for improved sensitivity and detection of subtle signals, with up to 1.65 times better efficacy per measurement.
Garmin GPSMAP 67i with inReach
Garmin GPSMAP 67i with inReach provides rugged GNSS navigation, satellite messaging, and SOS for backcountry geology and climate field teams.
Researchers developed a quantum cooling engine that manipulates energy flow without feedback control, relying solely on quantum measurements. The engine successfully reversed heat flow, with entanglement found to influence the energy exchange between the working substance and measurement apparatus.
Researchers at the University of Bristol have discovered a novel way to accelerate accurate quantum measurements by trading space for time using additional qubits. This method enables faster and more confident measurements without sacrificing accuracy, with potential applications in leading quantum hardware platforms.
Researchers at King's College London and Harvard University develop a detector that can identify axions, leading potential candidates for dark matter. The Axion Quasiparticle (AQ) technology has the potential to discover dark matter in five years with further development.
Researchers at CCNY have made a groundbreaking discovery of electronic interactions mediated via spin waves in 2D magnets. The interaction between excitons is controlled externally using a magnetic field, enabling the development of novel quantum transducers and advanced technologies.
AmScope B120C-5M Compound Microscope
AmScope B120C-5M Compound Microscope supports teaching labs and QA checks with LED illumination, mechanical stage, and included 5MP camera.
A study published in JCAP has established upper limits on the strength of quantum gravity effects on neutrino oscillations, providing valuable insights into the long-sought theory. The results show no signs of decoherence, a phenomenon that could be a key indicator of quantum gravity's presence.
Researchers at UC Riverside will explore how antiferromagnetic spintronics can improve memory density and computing speed. The project aims to develop ultrafast spin-based technology using special antiferromagnets with potential applications in advanced memory and computing.
Scientists at the University of Rochester have discovered a way to create artificial atoms within twisted monolayers of molybdenum diselenide, retaining information when activated by light. This breakthrough could lead to new types of quantum devices, such as memory or nodes in a quantum network.
Researchers at the University of Adelaide used quantum-sensitive cameras to image embryos, capturing biological processes in their natural state. The sensitive detection of photons allows for gentle illumination and minimizes damage from light, enabling researchers to study live cells and developing specimens.
Researchers have developed a method to observe quantum interference in surface collisions of methane molecules, revealing clear patterns of wave-like behavior that amplify or cancel out different pathways. This discovery confirms the active role of quantum mechanics in controlling molecular interactions at surfaces.
Apple iPad Pro 11-inch (M4)
Apple iPad Pro 11-inch (M4) runs demanding GIS, imaging, and annotation workflows on the go for surveys, briefings, and lab notebooks.
Researchers at the University of Surrey discovered evidence of opposing arrows of time emerging from quantum systems. The study suggests that time's arrow may not be fixed, and instead could flow in both forward and backward directions due to processes taking place at the quantum level.
Discounted hotel rates available at select hotels near the Anaheim Convention Center. The Global Physics Summit will feature nearly 14,000 individual presentations on new research in various fields.
The virtual application laboratory provides comprehensive technical knowledge and interactive measurement scenarios for quantum sensors. Industry can interactively assess the potential of this technology for their needs, with expert knowledge available through accompanying resources.
Researchers have discovered a new way to measure magnetic field orientation using tiny atom-based compasses. The technology has the potential to create precise measurement devices for various applications, including navigation, brain imaging, and medical research.
Researchers at CNR-INO develop device to explore boundary between classical and quantum physics, enabling study of nanosystems in both regimes. The nano-oscillator traps glass spheres with specific frequencies, exhibiting counterintuitive quantum behaviors.
Fluke 87V Industrial Digital Multimeter
Fluke 87V Industrial Digital Multimeter is a trusted meter for precise measurements during instrument integration, repairs, and field diagnostics.
Quantum particles can behave like foxes and rabbits, with one attracting the other but also repelling it, leading to constant motion and formation of time crystals. This effect can be realized in open quantum systems using coupled atoms driven by laser light.
Researchers used quantum squeezing to improve gas sensing performance of optical frequency comb lasers, doubling the speed of detectors. The technique allowed for more precise measurements with fewer errors, enabling faster detection of molecules like hydrogen sulfide.
Researchers at U of T have created SIMPL2, a platform that simplifies detection and improves accuracy of protein-protein interactions. The tool enables the rapid identification of protein interactions, including weak ones, for targeted drug therapies.
The University of Michigan's QuPID project seeks to develop robust quantum systems for applications like environmental monitoring, GPS navigation and semiconductor chip quality control. The team aims to create design kits for global adaptation and simplify instrumentation needed to manipulate light properties.
Kestrel 3000 Pocket Weather Meter
Kestrel 3000 Pocket Weather Meter measures wind, temperature, and humidity in real time for site assessments, aviation checks, and safety briefings.
A team of international researchers successfully controlled the quantum states of matter at ultrafast time scales and its chemical properties with extreme precision using light in the extreme ultraviolet. The technique was demonstrated on helium atoms, enabling the enhancement of selected quantum processes while suppressing others.
German physicist Christian Schneider has been awarded a European Research Council Consolidator Grant to study the optical properties of two-dimensional materials. His team plans to develop experimental set-ups to investigate the unique properties of these materials, which could lead to new applications in quantum technologies.
Physicists at the University of the Witwatersrand developed an innovative computing system harnessing laser beams and display technology to process multiple possibilities simultaneously. This approach could speed up complex calculations in fields like logistics and finance, with potential applications in quantum optimisation and machin...
Nikon Monarch 5 8x42 Binoculars
Nikon Monarch 5 8x42 Binoculars deliver bright, sharp views for wildlife surveys, eclipse chases, and quick star-field scans at dark sites.
Researchers at the University of Birmingham have developed a new theory that explains how light and matter interact at the quantum level. The theory enables scientists to precisely define the shape of a single photon for the first time.
Researchers have discovered that electrons in certain quantum materials behave like a viscous fluid, allowing for the detection of terahertz waves. This breakthrough enables faster data transfer and advanced medical imaging technologies.
Researchers at the University of Colorado Boulder have developed a new quantum timekeeper that combines four different clocks into one, allowing for increased precision. The device uses entanglement to reduce uncertainty in its ticking, enabling it to beat benchmark standards for optical atomic clocks.
A new study by Prof. Yaron Bromberg and Dr. Ohad Lib from the Hebrew University of Jerusalem has made significant progress in quantum computing through photonic-measurement-based quantum computation. They successfully generated cluster states with over nine qubits at a frequency of 100 Hz, overcoming scalability barriers.
Researchers at Tohoku University have successfully applied quantum squeezing to enhance the accuracy of measurements in complex quantum systems. By reducing uncertainty in one aspect while increasing it in another, they can measure variables like position and momentum with greater precision.
Celestron NexStar 8SE Computerized Telescope
Celestron NexStar 8SE Computerized Telescope combines portable Schmidt-Cassegrain optics with GoTo pointing for outreach nights and field campaigns.
Physicists propose a refined way to test the validity of alternative quantum models, which offer a possible explanation for quantum-classical transition. The team found big differences with previous expectations for low-energy X-ray radiation, depending on atomic species and specific collapse model.
Researchers at the University of Stuttgart have developed a breakthrough in quantum microscopy that allows them to observe the collective motion of electrons in materials. By studying the effect of impurities on these movements, they hope to develop materials with desired properties and create ultra-fast switching materials.
Researchers at the University of California - Riverside have proposed a chain of quantum magnetic objects called spin centers that can simulate exotic magnetic phases of matter. This breakthrough could lead to more efficient ways of storing and transferring information, as well as the development of room temperature quantum computers.
Creality K1 Max 3D Printer
Creality K1 Max 3D Printer rapidly prototypes brackets, adapters, and fixtures for instruments and classroom demonstrations at large build volume.
Physicists at the University of Cologne have discovered that magnetic elementary excitations in BaCo2V2O8 crystals are bound by both attractive and repulsive interactions. The study found that repulsively bound states, which were unexpected due to their lower stability, can exist in these materials.
A team of researchers has developed a platform to probe, interact with and control quantum systems in silicon. They used an electric diode to manipulate qubits inside a commercial silicon wafer, exploring how the defect responds to changes in the electric field and tuning its wavelength within the telecommunications band.
An international research team uses wavefunction matching to overcome computational challenges in ab initio methods for nuclear physics. By transforming realistic high-fidelity interactions into easily computable ones, they can perform accurate calculations that match real-world data on nuclear properties.
A team of researchers created a single negatively charged lead-vacancy center in diamond, which emits photons with specific frequencies not influenced by the crystal's vibrational energy. This characteristic makes the PbV center a promising building block for large-scale quantum networks.
Davis Instruments Vantage Pro2 Weather Station
Davis Instruments Vantage Pro2 Weather Station offers research-grade local weather data for networked stations, campuses, and community observatories.
Scientists at ETH Zurich create an artificial solid with switched-on interactions using magnetic fields, observing surprising topological effects. The study reveals the ability to transport particles by one lattice site, mimicking a screw's motion, and demonstrates robustness against disorder.
A German-Chinese team at Goethe University Frankfurt has successfully visualized the temporal evolution of electron waves using the Kapitza-Dirac effect. The researchers measured the time-dependent interaction between free electrons and ultrashort laser pulses, opening up exciting applications in quantum physics.
The Princeton Plasma Physics Laboratory has opened a new Quantum Diamond Lab to study plasma processes for creating diamond material with unique properties. Scientists aim to harness this material for quantum computing, secure communication, and precise measurements, enabling breakthroughs in fields like medicine and energy.
Physicists at the University of Southampton successfully detect weak gravitational pull on microscopic particles using a new technique. The experiment, published in Science Advances, could pave the way to finding the elusive quantum gravity theory.
Researchers at MIT have observed a rare electronic state in which electrons become fractions of their total charge without the need for external magnetic fields. This effect, known as the fractional quantum anomalous Hall effect, has significant implications for the development of topological quantum computing.
GoPro HERO13 Black
GoPro HERO13 Black records stabilized 5.3K video for instrument deployments, field notes, and outreach, even in harsh weather and underwater conditions.
Perovskite quantum dots made brighter by surface treatment with phospholipids, enabling higher photon emission rates. Coherent coupling of exciton dipoles boosts superradiance, making the dots even brighter for quantum technologies.
Researchers at Rice University have developed a new experimental technique that preserves quantum coherence in ultracold molecules for a significantly longer time. By using a specific wavelength of light, the 'magic trap' delays the onset of decoherence, allowing scientists to study fundamental questions about interacting quantum matter.
Researchers at MIT recreate a 'quantum bomb tester' using bouncing droplets, finding that the droplet's classical dynamics give rise to similar statistical behavior as predicted by quantum mechanics. The study bridges the gap between two realities, offering insight into quantum behavior from a local realist perspective.
Meta Quest 3 512GB
Meta Quest 3 512GB enables immersive mission planning, terrain rehearsal, and interactive STEM demos with high-resolution mixed-reality experiences.