Bluesky Facebook Reddit Email

Life Sciences

Comprehensive exploration of living organisms, biological systems, and life processes across all scales from molecules to ecosystems. Encompasses cutting-edge research in biology, genetics, molecular biology, ecology, biochemistry, microbiology, botany, zoology, evolutionary biology, genomics, and biotechnology. Investigates cellular mechanisms, organism development, genetic inheritance, biodiversity conservation, metabolic processes, protein synthesis, DNA sequencing, CRISPR gene editing, stem cell research, and the fundamental principles governing all forms of life on Earth.

447,757 articles | 2542 topics

Health and Medicine

Comprehensive medical research, clinical studies, and healthcare sciences focused on disease prevention, diagnosis, and treatment. Encompasses clinical medicine, public health, pharmacology, epidemiology, medical specialties, disease mechanisms, therapeutic interventions, healthcare innovation, precision medicine, telemedicine, medical devices, drug development, clinical trials, patient care, mental health, nutrition science, health policy, and the application of medical science to improve human health, wellbeing, and quality of life across diverse populations.

431,843 articles | 751 topics

Social Sciences

Comprehensive investigation of human society, behavior, relationships, and social structures through systematic research and analysis. Encompasses psychology, sociology, anthropology, economics, political science, linguistics, education, demography, communications, and social research methodologies. Examines human cognition, social interactions, cultural phenomena, economic systems, political institutions, language and communication, educational processes, population dynamics, and the complex social, cultural, economic, and political forces shaping human societies, communities, and civilizations throughout history and across the contemporary world.

260,756 articles | 745 topics

Physical Sciences

Fundamental study of the non-living natural world, matter, energy, and physical phenomena governing the universe. Encompasses physics, chemistry, earth sciences, atmospheric sciences, oceanography, materials science, and the investigation of physical laws, chemical reactions, geological processes, climate systems, and planetary dynamics. Explores everything from subatomic particles and quantum mechanics to planetary systems and cosmic phenomena, including energy transformations, molecular interactions, elemental properties, weather patterns, tectonic activity, and the fundamental forces and principles underlying the physical nature of reality.

257,913 articles | 1552 topics

Applied Sciences and Engineering

Practical application of scientific knowledge and engineering principles to solve real-world problems and develop innovative technologies. Encompasses all engineering disciplines, technology development, computer science, artificial intelligence, environmental sciences, agriculture, materials applications, energy systems, and industrial innovation. Bridges theoretical research with tangible solutions for infrastructure, manufacturing, computing, communications, transportation, construction, sustainable development, and emerging technologies that advance human capabilities, improve quality of life, and address societal challenges through scientific innovation and technological progress.

225,386 articles | 998 topics

Scientific Community

Study of the practice, culture, infrastructure, and social dimensions of science itself. Addresses how science is conducted, organized, communicated, and integrated into society. Encompasses research funding mechanisms, scientific publishing systems, peer review processes, academic ethics, science policy, research institutions, scientific collaboration networks, science education, career development, research programs, scientific methods, science communication, and the sociology of scientific discovery. Examines the human, institutional, and cultural aspects of scientific enterprise, knowledge production, and the translation of research into societal benefit.

193,043 articles | 157 topics

Space Sciences

Comprehensive study of the universe beyond Earth, encompassing celestial objects, cosmic phenomena, and space exploration. Includes astronomy, astrophysics, planetary science, cosmology, space physics, astrobiology, and space technology. Investigates stars, galaxies, planets, moons, asteroids, comets, black holes, nebulae, exoplanets, dark matter, dark energy, cosmic microwave background, stellar evolution, planetary formation, space weather, solar system dynamics, the search for extraterrestrial life, and humanity's efforts to explore, understand, and unlock the mysteries of the cosmos through observation, theory, and space missions.

29,662 articles | 175 topics

Research Methods

Comprehensive examination of tools, techniques, methodologies, and approaches used across scientific disciplines to conduct research, collect data, and analyze results. Encompasses experimental procedures, analytical methods, measurement techniques, instrumentation, imaging technologies, spectroscopic methods, laboratory protocols, observational studies, statistical analysis, computational methods, data visualization, quality control, and methodological innovations. Addresses the practical techniques and theoretical frameworks enabling scientists to investigate phenomena, test hypotheses, gather evidence, ensure reproducibility, and generate reliable knowledge through systematic, rigorous investigation across all areas of scientific inquiry.

21,889 articles | 139 topics

Mathematics

Study of abstract structures, patterns, quantities, relationships, and logical reasoning through pure and applied mathematical disciplines. Encompasses algebra, calculus, geometry, topology, number theory, analysis, discrete mathematics, mathematical logic, set theory, probability, statistics, and computational mathematics. Investigates mathematical structures, theorems, proofs, algorithms, functions, equations, and the rigorous logical frameworks underlying quantitative reasoning. Provides the foundational language and tools for all scientific fields, enabling precise description of natural phenomena, modeling of complex systems, and the development of technologies across physics, engineering, computer science, economics, and all quantitative sciences.

3,023 articles | 113 topics

Optical demonstration of quantum fault-tolerant threshold

Researchers have developed an experimental platform to demonstrate the quantum fault-tolerant threshold, a crucial concept in quantum computing. The team observed the error rate threshold using two entangled photons and confirmed its existence through single-qubit and two-qubit operations.

AmScope B120C-5M Compound Microscope

AmScope B120C-5M Compound Microscope supports teaching labs and QA checks with LED illumination, mechanical stage, and included 5MP camera.

A mirror tracks a tiny particle

Researchers at the University of Innsbruck developed a new technique to track levitated nanoparticles with improved precision. By using the reflected light of a mirror, they outperformed state-of-the-art detection methods and opened up new possibilities for nanoparticle-based sensing applications.

Processing photons in picoseconds

Columbia Engineers propose using a time lens to control individual photons, resolving them with picosecond resolution. This breakthrough enables the manipulation of photon spectra and spectral bandwidths, essential for building quantum information networks.

Rice lab’s quantum simulator delivers new insight

Physicists at Rice University have created a quantum simulator that reveals the behavior of electrons in one-dimensional wires, shedding light on spin-charge separation. The study's findings have implications for quantum computing and electronics with atom-scale wires.

GQ GMC-500Plus Geiger Counter

GQ GMC-500Plus Geiger Counter logs beta, gamma, and X-ray levels for environmental monitoring, training labs, and safety demonstrations.

Controlling the waveform of ultrashort infrared pulses

Researchers successfully controlled ultrashort mid-infrared light pulses, enabling new possibilities in optical control for biomedical applications and quantum electronics. The team developed a method to precisely control the oscillations of generated mid-infrared light via tuning laser input parameters.

Quantum systems and the flight of the bee

A team of scientists used a quantum simulator to study the behavior of a complex quantum system, finding that it exhibits characteristics similar to fluid dynamics. The research also showed that this phenomenon can be observed in the flights of bees, as well as in unusual stock market movements.

SAMSUNG T9 Portable SSD 2TB

SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.

Study points to physical principles that underlie quantum Darwinism

The study investigates the role of physical principles in quantum Darwinism, finding that it relies on non-classical features, specifically entanglement, to emerge via natural selection. The researchers employed generalized probabilistic theories to analyze and compare different physical theories.

In Einstein’s footsteps and beyond

Researchers discovered near-zero index materials where light's momentum becomes zero, altering fundamental processes like atomic recoil and Heisenberg's uncertainty principle. These materials could enable perfect cloaking and have potential applications in quantum computing and optics.

Apple AirPods Pro (2nd Generation, USB-C)

Apple AirPods Pro (2nd Generation, USB-C) provide clear calls and strong noise reduction for interviews, conferences, and noisy field environments.

Microcavities as a sensor platform

Researchers at University of Innsbruck and ETH Zurich propose a new concept for a high-precision quantum sensor using microcavities and levitated nanoparticles. By exploiting fast unstable dynamics, they demonstrate mechanical squeezing reducing motional fluctuations below zero-point motion.

Speed limit of computers detected

Scientists have discovered a speed limit for computer chips, with one petahertz being the maximum frequency for signal transmission. The research uses ultra-short laser pulses to create electrical currents in dielectric materials, allowing for faster data transmission.

Quantum physics sets a speed limit to electronics

Researchers investigated the shortest possible time scale of optoelectronic phenomena and found that it cannot be increased beyond one petahertz. The experiments used ultra-short laser pulses to create free charge carriers in materials, which were then moved by a second pulse to generate an electric current.

Quantum sensors: Measuring even more precisely

Physicists at the University of Innsbruck have developed a programmable quantum sensor that can measure with even greater precision, using tailored entanglement to optimize performance. The sensor autonomously finds its optimal settings through free parameters, promising a significant advantage over classical computers.

Don’t underestimate undulating graphene

Researchers at Rice University have developed a new type of electronics using undulating graphene, which creates mini channels that produce detectable magnetic fields. This technology has the potential to facilitate nanoscale optical devices and valleytronics applications, such as converging lenses and collimators.

Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C)

Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C) keeps Macs, tablets, and meters powered during extended observing runs and remote surveys.

Physicists shed light on the darkness

Researchers at the University of Innsbruck have successfully manipulated dark states in superconducting circuits using microwave radiation. The team's discovery opens up new possibilities for quantum simulations and information processing, which could have significant implications for fields such as chemistry and materials science.

Chaining atoms together yields quantum storage

Researchers at Caltech developed a novel approach for quantum storage using nuclear spins, which can effectively chain up several atoms to store information. The system utilizes ytterbium ions and surrounding vanadium atoms to create a reliable quantum memory.

Kestrel 3000 Pocket Weather Meter

Kestrel 3000 Pocket Weather Meter measures wind, temperature, and humidity in real time for site assessments, aviation checks, and safety briefings.

€16 million for photonic quantum processors

A €16 million project, PhotonQ, is developing a photonic quantum processor to process qubits and reduce error rates. The processor will enable rapid scaling to relevant qubit numbers for practical applications.

Bristol team chase down advantage in quantum race

Researchers at the University of Bristol have reduced simulation time for an optical quantum computer from 600 million years to just a few months, achieving a one-billion-fold speedup. This breakthrough paves the way for future studies on quantum advantage and computational power.

Apple MacBook Pro 14-inch (M4 Pro)

Apple MacBook Pro 14-inch (M4 Pro) powers local ML workloads, large datasets, and multi-display analysis for field and lab teams.

How big does your quantum computer need to be?

Researchers developed a tool to determine the minimum quantum computer size needed to solve problems like breaking Bitcoin encryption and simulating molecules. The estimated requirement ranges from 30 million to 300 million physical qubits, suggesting Bitcoin is currently safe from a quantum attack.

Towards quantum simulation of false vacuum decay

By shaking an optical lattice potential, researchers realized a discontinuous phase transition in a strongly correlated quantum gas, opening the door to quantum simulations of false vacuum decay in the early universe. This work provides a flexible platform for exploring the role of quantum fluctuations in first-order phase transitions.

Seeing inside cells with an integrated nanowire probe

Researchers developed a multifunctional microfiber probe for real-time monitoring of cellular molecules and changes in cell morphology. The nanowire probe enabled sensitive detection of refractive index distribution in single living cells during apoptosis.

Photon pairs are more sensitive to rotations than single photons

Scientists from Tampere University and National Research Council of Canada develop a technique using two-photon N00N states to create entangled photon pairs with improved measurement precision. This allows for spatially structured quantum states of light that can go beyond classical limits in rotation estimation.

Atom-optically synthetic gauge fields for a noninteracting Bose gas

Scientists demonstrated experimental realization of an atom-optically synthetic gauge field in a noninteracting Bose gas of Cs atoms. They observed gauge flux-dependent populations and chiral atomic currents, which are significant for understanding gauge fields in synthetic dimensions.

Garmin GPSMAP 67i with inReach

Garmin GPSMAP 67i with inReach provides rugged GNSS navigation, satellite messaging, and SOS for backcountry geology and climate field teams.

Snapshots from the quantum world

Researchers develop technique to study singlet/triplet ratio of electron pairs in charge-separated states, which could lead to advancements in organic solar cells and qubits. The 'pump-push-pulse' method allows for snapshots of spin state at different times.

Swinging on the quantum level

Researchers from Münster, Bayreuth, and Berlin have proposed a new way of preparing quantum systems to generate single photon states. The proposed method uses a swing-up process in the quantum system to separate generated photons from exciting laser pulses, which is promising for applications.

A quantum view of ‘combs’ of light

Researchers at Stanford University have developed a miniaturized frequency comb that can generate non-classical light, enabling the study of quantum entanglement and opening up new pathways for quantum computing. The microcomb's precise spacing allows for detailed measurement of its finer features.

Apple iPhone 17 Pro

Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.

Quantum algorithms bring ions to a standstill

Researchers have successfully cooled a pair of highly charged ions to an unprecedentedly low temperature of 200 µK using quantum algorithms. This achievement brings the team closer to building an optical atomic clock with highly charged ions, which could potentially be more accurate than existing clocks.

Sky & Telescope Pocket Sky Atlas, 2nd Edition

Sky & Telescope Pocket Sky Atlas, 2nd Edition is a durable star atlas for planning sessions, identifying targets, and teaching celestial navigation.

A catalytic recipe for transforming quantum states

Researchers have found a complete solution to the problem of whether catalytic transformations are possible, revealing that quantum catalysts can boost quantum processes. This breakthrough has practical applications in quantum cryptography, secure communication, and efficient state merging, making noisy states useful in quantum computing.

A superconducting silicon-photonic chip for quantum communication

Researchers have developed a superconducting silicon-photonic chip for quantum communication, enabling optimal Bell-state measurement of time-bin encoded qubits. This breakthrough enhances the key rate of secure quantum communication and removes detector side-channel attacks, significantly increasing security.

Chip-based quantum microcomb creates entanglement between optical fields

Researchers have developed a tiny chip-based device that uses two-mode squeezing to create unconditional entanglement between continuous optical fields. The new microcomb has been tested and found to exhibit raw squeezing of 1.6 dB, with potential for further improvement by reducing system losses.

A traffic light for light-on-a-chip

A team of researchers at EPFL and Purdue University has developed a magnetic-free optical isolator using integrated photonics and micro-electromechanical systems. This device can couple to and deflect light propagating in a waveguide, mimicking the effects of magnet-driven isolators without requiring magnetic fields.

Apple iPad Pro 11-inch (M4)

Apple iPad Pro 11-inch (M4) runs demanding GIS, imaging, and annotation workflows on the go for surveys, briefings, and lab notebooks.

Bridging optics and electronics

Researchers at Harvard John A. Paulson School of Engineering and Applied Sciences have developed a simple spatial light modulator made from gold electrodes covered by a thin film of electro-optical material. This device can control light intensity and pixel by pixel, enabling compact, high-speed, and precise optical devices.

Ruling electrons and vibrations in a crystal with polarized light

Scientists from Tokyo Institute of Technology have discovered a new method to manipulate quantum vibrations in solids using polarized light pulses. The research demonstrates the importance of polarization in controlling these vibrations, which could lead to breakthroughs in quantum control and material properties.

Nikon Monarch 5 8x42 Binoculars

Nikon Monarch 5 8x42 Binoculars deliver bright, sharp views for wildlife surveys, eclipse chases, and quick star-field scans at dark sites.

0.75 Gbit/s key distribution with mode-shift keying chaos synchronization

Researchers propose a novel key distribution scheme based on mode-shift keying chaos synchronization to overcome limitations of laser transition time, achieving 0.7503 Gbit/s rate with high security. The method uses Fabry-Perot lasers and random drive source to generate chaotic waveforms, which are then quantized to produce random bits.

A 15-user quantum secure direct communication network

A new quantum secure direct communication (QSDC) network has been demonstrated by a team of scientists, enabling 15 users to communicate securely over long distances. The network uses time-energy entanglement and sum-frequency generation (SFG), achieving a fidelity of greater than 95% for entangled states shared between users.

Compact amplifier could revolutionize optical communication

Researchers at Chalmers University of Technology have developed a unique optical amplifier that offers high performance, is compact enough to integrate into a chip just millimeters in size, and does not generate excess noise. This breakthrough technology has the potential to revolutionize both space and fiber communication.

Fluke 87V Industrial Digital Multimeter

Fluke 87V Industrial Digital Multimeter is a trusted meter for precise measurements during instrument integration, repairs, and field diagnostics.

NSF to fund revolutionary center for optoelectronic, quantum technologies

The Center for Integration of Modern Optoelectronic Materials on Demand will develop new semiconductor materials and scalable manufacturing processes for applications in displays, sensors, and quantum communication. The center aims to connect academic research with industrial and governmental needs, educating a diverse STEM workforce.

Quantum networks in our future

Researchers propose a time-sensitive network control plane as a key component of quantum networks, enabling real-time control and low costs. Industry applications include cybersecurity through quantum key distribution, but standardization and certification are needed.

Russian physicists mix classical light with half a photon on a qubit

A Russian-U.K. research team has proposed a theoretical description for the new effect of quantum wave mixing involving classical and nonclassical states of microwave radiation. The study builds on earlier experiments on artificial atoms, which serve as qubits for quantum computers and probes fundamental laws of nature.

Small structures on a large scale

Researchers from Paderborn University create a simple integrated quantum network using thin layers of lithium niobate to demonstrate large-scale functionalities. The project aims to develop scalable quantum components with industrial application potential.

Sony Alpha a7 IV (Body Only)

Sony Alpha a7 IV (Body Only) delivers reliable low-light performance and rugged build for astrophotography, lab documentation, and field expeditions.

DTU researchers tighten grip on quantum computer

The DTU researchers have developed a universal measurement-based optical quantum computer platform, enabling the execution of any arbitrary algorithm. The platform is scalable to thousands of qubits and can be connected directly to a future quantum Internet.

Rigol DP832 Triple-Output Bench Power Supply

Rigol DP832 Triple-Output Bench Power Supply powers sensors, microcontrollers, and test circuits with programmable rails and stable outputs.