Researchers used quantum squeezing to improve gas sensing performance of optical frequency comb lasers, doubling the speed of detectors. The technique allowed for more precise measurements with fewer errors, enabling faster detection of molecules like hydrogen sulfide.
Researchers have developed a method to create photon pairs that achieves higher performance on a much smaller device using less energy. The new device, measuring just 3.4 micrometers thick, has the potential to enable significant gains in energy efficiency and technical capabilities of quantum devices.
SAMSUNG T9 Portable SSD 2TB
SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.
The University of Michigan's QuPID project seeks to develop robust quantum systems for applications like environmental monitoring, GPS navigation and semiconductor chip quality control. The team aims to create design kits for global adaptation and simplify instrumentation needed to manipulate light properties.
The study creates ultra-stable thin-film polariton filters with exceptional angular stability, transmitting up to 98% of light, even at extreme viewing angles. This technology has enormous scientific and economic potential for applications in display technology, sensor technologies, biophotonics, and more.
German physicist Christian Schneider has been awarded a European Research Council Consolidator Grant to study the optical properties of two-dimensional materials. His team plans to develop experimental set-ups to investigate the unique properties of these materials, which could lead to new applications in quantum technologies.
DJI Air 3 (RC-N2)
DJI Air 3 (RC-N2) captures 4K mapping passes and environmental surveys with dual cameras, long flight time, and omnidirectional obstacle sensing.
The new issue of Optica Quantum features 10 research articles on quantum information science and technology. New methods for compensating scattering and aberrations in entangled photon systems have been proposed, and ultrafast nonlinear wave mixing spectroscopy schemes employing coherent light pulses and vacuum modes are being explored.
A team of researchers has developed a new way to study disorder in superconductors using terahertz pulses of light. They observed that the disorder in superconducting transport was significantly lower than previously thought, with stability up to 70% of the transition temperature.
Scientists at Chalmers University of Technology have successfully combined nonlinear and high-index nanophotonics in a single nanoobject, creating a disk-like structure with unique optical properties. The discovery has great potential for developing efficient and compact nonlinear optical devices.
A new graduate program at Rice University aims to equip students with skills needed to serve as leaders in quantum technology innovation. The program will provide interdisciplinary training to 30 students, combining expertise from quantum physics, optics, and nanotechnology.
Apple iPhone 17 Pro
Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.
Researchers have successfully achieved spin squeezing in a more accessible way, enabling precise measurements with quantum-enhanced metrology. This breakthrough may lead to new portable sensors for biomedical imaging and atomic clocks.
Researchers discovered that amyloid fibrils can harness quantum superradiant effects to mitigate oxidative stress, potentially transforming dementia treatments and understanding of Alzheimer's disease. This finding raises questions about the conventional view of amyloid's role in the disease.
Researchers at University of Konstanz shape electron matter wave into left- or right-handed coils of mass and charge. This achievement has implications for fundamental physics and potential applications in quantum optics, particle physics, and electron microscopy.
Apple iPad Pro 11-inch (M4)
Apple iPad Pro 11-inch (M4) runs demanding GIS, imaging, and annotation workflows on the go for surveys, briefings, and lab notebooks.
Researchers at Stanford University have developed a chip-scale Titanium-sapphire laser, four orders of magnitude smaller and three orders less expensive than traditional lasers. This breakthrough enables mass production on wafers, potentially thousands of lasers per disc, democratizing access to these powerful tools.
Scientists have demonstrated spontaneous parametric down-conversion in a liquid crystal, creating entangled photon pairs with high efficiency. The discovery enables flexible and electric-field-tunable quantum light sources.
A team of researchers successfully demonstrated the principles of gravity-mediated entanglement in a photonic quantum simulation. This breakthrough provides crucial insights into the nature of gravity and its interaction with quantum mechanics.
Sony Alpha a7 IV (Body Only)
Sony Alpha a7 IV (Body Only) delivers reliable low-light performance and rugged build for astrophotography, lab documentation, and field expeditions.
Researchers created a topological quantum simulator device that operates at room temperature, allowing for the study of fundamental nature of matter and light. The device has the potential to support the development of more efficient lasers.
Researchers have developed a new device that can determine photon pair properties in a single shot, improving precision and accuracy in quantum technologies. The metasurface-enabled multiport interferometer reduces size, weight, and power while increasing reliability.
New molecular design principles can stop electrons from coupling with atomic vibrations, improving the performance of organic molecules in OLEDs and other applications. This breakthrough opens up new trajectories for industries such as displays, bio-medical imaging, and disease detection.
Scientists create a small drum that stores data sent with light in its sonic vibrations, allowing for secure transmission over long distances. This innovation has the potential to revolutionize quantum computing and enable an internet with quantum speed and security.
Garmin GPSMAP 67i with inReach
Garmin GPSMAP 67i with inReach provides rugged GNSS navigation, satellite messaging, and SOS for backcountry geology and climate field teams.
Scientists have developed a new method to manipulate light using synthetic dimension dynamics, enabling precise control over light propagation and confinement. This breakthrough has significant implications for applications such as mode lasing, quantum optics, and data transmission.
Researchers at the Max Planck Institute of Quantum Optics have successfully developed a new technique for deciphering the properties of light and matter, enabling precise spectroscopy under low-light conditions. This breakthrough opens up possibilities for novel applications in photon-level diagnostics, precision spectroscopy, and biom...
Researchers at Max Born Institute have successfully implemented high-resolution linear-absorption dual-comb spectroscopy in the ultraviolet spectral range. This breakthrough enables experiments under low-light conditions, paving the way for novel applications in precision spectroscopy and biomedical sensing.
GQ GMC-500Plus Geiger Counter
GQ GMC-500Plus Geiger Counter logs beta, gamma, and X-ray levels for environmental monitoring, training labs, and safety demonstrations.
The Institute for Molecular Science (IMS) is accelerating the development of novel quantum computers based on 'cold (neutral) atom' technology, leveraging expertise from 10 industry partners. The partnership aims to launch a start-up company and develop practical applications of quantum computers by end FY2024.
Researchers demonstrate a way to amplify interactions between particles to overcome environmental noise, enabling the study of entanglement in larger systems. This breakthrough holds promise for practical applications in sensor technology and environmental monitoring.
Researchers at Paderborn University have developed a new method for determining the characteristics of optical quantum states using photon detectors, enabling precise knowledge essential for quantum computing and information processing.
Meta Quest 3 512GB
Meta Quest 3 512GB enables immersive mission planning, terrain rehearsal, and interactive STEM demos with high-resolution mixed-reality experiences.
Physicists at the University of Southampton successfully detect weak gravitational pull on microscopic particles using a new technique. The experiment, published in Science Advances, could pave the way to finding the elusive quantum gravity theory.
Researchers have discovered a new state of matter characterized by chiral currents, generated by cooperative electron movement. This phenomenon has implications for the development of new electronic devices and technologies, including optoelectronics and quantum technologies.
A team of researchers from the universities of Mainz, Olomouc, and Tokyo has successfully generated a logical qubit from a single light pulse that can correct errors. This breakthrough uses a photon-based approach to overcome the limitations of current quantum computing technology.
Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C)
Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C) keeps Macs, tablets, and meters powered during extended observing runs and remote surveys.
A new quantum optics technique has been introduced to explore light-matter interactions in semiconductors. The technique, called photon-cascade correlation spectroscopy, uses spectral filtering and photon-correlation analysis to reveal interactions between semiconductor exciton-polaritons.
Researchers have demonstrated a connection between quantum entanglement and topology, allowing for the preservation of quantum information even when entanglement is fragile. This breakthrough enables a new encoding mechanism that utilizes entanglement to encode quantum information in scenarios with minimal entanglement.
Researchers have successfully fabricated a self-assembling photonic cavity with atomic-scale confinement, bridging the gap between nanoscopic and macroscopic scales. The cavities were created using a novel approach that combines top-down and bottom-up fabrication techniques, enabling unprecedented miniaturization.
Researchers at Rice University have discovered a way to transform a rare-earth crystal into a magnet by using chirality in phonons. Chirality, or the twisting of atoms' motion, breaks time-reversal symmetry and aligns electron spins, creating a magnetic effect.
Rigol DP832 Triple-Output Bench Power Supply
Rigol DP832 Triple-Output Bench Power Supply powers sensors, microcontrollers, and test circuits with programmable rails and stable outputs.
Theoretical demonstration shows that an optical cavity can change the magnetic order of α-RuCl3 from a zigzag antiferromagnet to a ferromagnet solely by placing it into the cavity. The team's work circumvents practical problems associated with continuous laser driving.
Scientists at the University of Warsaw have developed a device that can convert quantum information between microwave and optical photons, enabling a crucial part of quantum network infrastructure. This breakthrough could lead to advancements in quantum computing, radio-astronomy, and high-speed internet connections.
Researchers create an ultrafast quantum simulator that can simulate large-scale quantum entanglement on a timescale of several hundred picoseconds. By applying their novel ultrafast quantum computer scheme, they overcome the issue of external noise and achieve high speed and accurate controls.
Scientists at the University of Innsbruck improved atomic clock accuracy by using finite-range interactions to create entanglement, reducing measurement errors by roughly half.
Davis Instruments Vantage Pro2 Weather Station
Davis Instruments Vantage Pro2 Weather Station offers research-grade local weather data for networked stations, campuses, and community observatories.
A team of researchers at MIT has successfully controlled quantum randomness from the vacuum, a milestone in quantum technologies. By injecting a weak laser bias into an optical parametric oscillator, they have created a controllable source of 'biased' quantum randomness, enabling probabilistic computing and ultra-precise field sensing.
The UW students' achievement enables the implementation of a fractional Fourier Transform in optical pulses, allowing for more precise pulse identification and filtering. This innovation has significant implications for spectroscopy and telecommunications, where precise signal processing is crucial.
A new technique developed by researchers at the University of Warsaw's Faculty of Physics allows for up to a 200-fold change in pulse duration with an efficiency of 25 percent. This enables quantum Internet links to operate up to 50 times faster, contributing to the development of superfast quantum connections.
A team of researchers has achieved unparalleled precision in measuring the time delay between two photons using frequency-resolving sampling measurements. This breakthrough enables faster and more efficient characterisation of nanostructures, including biological samples and nanomaterial surfaces.
The team successfully entangled two qudits with unprecedented performance, enabling faster and more robust quantum computing. This breakthrough could lead to significant advancements in fields like chemistry and physics.
Creality K1 Max 3D Printer
Creality K1 Max 3D Printer rapidly prototypes brackets, adapters, and fixtures for instruments and classroom demonstrations at large build volume.
Researchers from ETH Zurich have achieved groundbreaking cooling of a glass nanoparticle along two directions of motion, overcoming the 'Dark Mode Effect'. This breakthrough enables the creation of fragile quantum states and paves the way for ultrasensitive gyroscopes and sensors.
A research team from USTC demonstrated nonreciprocal routing between any two modes with different frequencies using radiation pressure force. They used two optical modes and two mechanical modes to form a closed loop in a microresonator, achieving phonon-phonon, photon-photon, and photon-phonon nonreciprocal conversions.
Researchers from Nanjing University have proposed the first scheme to practically generate N-photon states deterministically using a lithium-niobate-on-insulator platform. The scheme involves deterministic parametric down-conversion and demonstrates feasibility for generating multiphoton qubit states.
CalDigit TS4 Thunderbolt 4 Dock
CalDigit TS4 Thunderbolt 4 Dock simplifies serious desks with 18 ports for high-speed storage, monitors, and instruments across Mac and PC setups.
Researchers from University of the Witwatersrand developed a new approach to studying complex light in complex systems. They found distortion-free forms of structured light that emerge undistorted from noisy channels, unlike other forms of structured light which become unrecognizable. This breakthrough has the potential to pave the wa...
Scientists develop eigenmodes of structured light that remain undistorted even in turbulent channels, enabling robust transmission through noisy media. This breakthrough paves the way for future work in quantum light communication and imaging through complex systems.
Researchers have devised a new mechanism to generate high-energy 'quantum light', which could reveal new properties of matter at the atomic scale. The theory predicts a way to control the quantum nature of light using correlated emitters with a strong laser.
Researchers developed BrightEyes-TTM, an open-source stopwatch to study molecular interactions inside living cells. The platform records the lifetime of fluorescent molecules, providing insights into cellular structure and function.
Researchers at University of Copenhagen and Ruhr University Bochum have made a groundbreaking discovery, solving a long-standing problem in quantum physics. They can now control two quantum light sources, enabling the creation of quantum mechanical entanglement, a phenomenon with sci-fi-like properties.
Celestron NexStar 8SE Computerized Telescope
Celestron NexStar 8SE Computerized Telescope combines portable Schmidt-Cassegrain optics with GoTo pointing for outreach nights and field campaigns.
A team of researchers observed magnetically mediated hole pairing in a synthetic crystal, confirming theories that magnetic fluctuations give rise to pairing. The experiments suggest significant mobility of bound hole pairs, which could be efficient carriers of currents.
Researchers at Columbia Engineering's Lipson Nanophotonics Group create tunable and narrow-linewidth chip-scale lasers emitting light of different colors, including green, blue, and violet. These inexpensive lasers have the smallest footprint and shortest wavelength of any tunable and narrow-linewidth integrated laser emitting visible ...
Scientists at Swinburne University of Technology and FLEET collaborators observe and explain signatures of Fermi polaron interactions in atomically-thin WS2 using ultrafast spectroscopy. Repulsive forces arise from phase-space filling, while attractive forces lead to cooperatively bound exciton-exciton-electron states.
AmScope B120C-5M Compound Microscope
AmScope B120C-5M Compound Microscope supports teaching labs and QA checks with LED illumination, mechanical stage, and included 5MP camera.
Researchers developed a new technique to measure geometric phases in thermal atoms, exploiting superradiance lattices. By analyzing energy spectra and anti-crossings, they reconstructed the Zak phase of energy bands.
A team at Tampere University has demonstrated that quantum waves behave differently from classical counterparts, increasing the precision of distance measurements. Their findings also shed light on the physical origin of the Gouy phase anomaly in focused light fields.
Researchers at the Max Planck Institute have successfully generated up to 14 entangled photons using a single atom, enabling efficient creation of quantum computer building blocks. This breakthrough could facilitate scalable measurement-based quantum computing and enable secure data transmission over greater distances.
Researchers discovered that a naturally insulating material, lanthanide-doped upconversion nanoparticle (UCNP), emits bursts of superfluorescence at room temperature and regular intervals. This property is valuable for quantum optical applications, such as faster microchips or neurosensors.
Sky & Telescope Pocket Sky Atlas, 2nd Edition
Sky & Telescope Pocket Sky Atlas, 2nd Edition is a durable star atlas for planning sessions, identifying targets, and teaching celestial navigation.
Researchers developed a new method for converting light frequencies using atomically thin layers of molybdenum disulfide, enabling smaller lasers and potential applications in optical communications. The breakthrough could lead to compact phase-matched nonlinear optics and waveguide devices.
Researchers demonstrate a compact QKD system that paves the way for cost-effective satellite-based quantum networks. The system successfully distributes secure keys between a space lab and four ground stations, representing an important step toward practical QKD networks.
Scientists from Göttingen and Lausanne successfully created electron-photon pairs in an electron microscope for the first time. This breakthrough enables researchers to harness free electrons and photons in a controlled manner.
Researchers at the University of Birmingham have developed a transportable optical clock system that addresses key barriers to deploying quantum clocks in real-world settings. The new design can capture nearly 160,000 ultra-cold atoms within an ultra-high vacuum chamber and survive long-distance transportation, paving the way for wides...