Bluesky Facebook Reddit Email

FMRP mediates immune evasion in mouse tumors

11.17.22 | American Association for the Advancement of Science (AAAS)

Apple iPhone 17 Pro

Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.

Genetic inactivation of the neuronal fragile X mental retardation protein (FMRP) in cancer cells resulted in reduced growth and increased T cell vulnerability in mouse tumors, researchers report. Many human cancers develop the ability to evade the adaptive immune system, rendering them resistant to immunotherapeutic treatments. Therapeutic strategies designed to disrupt these barriers to immune vulnerability have shown promising results in some patients and cancers. However, most patients do not respond to immunotherapies or only experience limited or short-term benefits. These common outcomes underscore an urgent need to better understand the cellular and molecular mechanisms underlying the immune responses to cancer in order to develop more effective treatments. To address this need, Qiqun Zeng and colleagues investigate the potential role of FMRP, an RNA binding translational regulatory protein commonly associated with the stability and translation of neuronal RNAs. While previous research has also implicated FMRP in tumor progression, little is known about its functional roles in cancer and immunoregulation. By genetically modulating the expression of the FMRP gene in cancer cells in mice, Zeng et al. discovered that immune evasion often involves frequent, abnormal expression of FMRP in solid tumors, which has the effect of repressing immune attack in cancer cells. Inactivating FMRP expression in mouse tumor cells resulted in reduced tumor growth and greater susceptibility to attack by T cells, leading to enhanced survival of the mice. The authors suggest that, mechanistically, FMRP creates a barrier to the recruitment and expansion of T lymphocytes within tumors, which allows them to evade immune destruction. “The widespread expression of FMRP in solid tumors, concomitant with induction of its cancer regulatory network, constitutes a previously unappreciated mechanism whereby tumors evade immune destruction,” write the authors.

Science

10.1126/science.abl7207

Aberrant hyperexpression of the RNA binding protein FMRP in tumors mediates immune evasion

18-Nov-2022

Keywords

Article Information

Contact Information

Science Press Package Team
American Association for the Advancement of Science/AAAS
scipak@aaas.org

How to Cite This Article

APA:
American Association for the Advancement of Science (AAAS). (2022, November 17). FMRP mediates immune evasion in mouse tumors. Brightsurf News. https://www.brightsurf.com/news/1ZZ5GO51/fmrp-mediates-immune-evasion-in-mouse-tumors.html
MLA:
"FMRP mediates immune evasion in mouse tumors." Brightsurf News, Nov. 17 2022, https://www.brightsurf.com/news/1ZZ5GO51/fmrp-mediates-immune-evasion-in-mouse-tumors.html.