Bluesky Facebook Reddit Email

Optimization of hemp-ground tire rubber/high density polyethylene composites

05.23.17 | Bentham Science Publishers

Apple iPhone 17 Pro

Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.

Recent interest in lignocellulosic fibres was devoted to improve the mechanical properties of polymers. But one of their main limitation is the poor compatibility and adhesion between these polar/hydrophilic fibres with most commercial resins being non-polar and hydrophobic. This problem has been partially solved using physical and chemical surface treatments, and/or the addition of a coupling agent (phase compatibilization). So better interfacial adhesion was found to further improve the rigidity and strength of polymers. But several applications may need more elongation/elasticity/impact strength where a compromise must be made. This is where hybrid composites come into play: by a careful selection of two or more different types of "additives", a good balance between stiffness and strength is possible. But for industrial processes, another important issue is the cost. This is why a quality/cost ratio is proposed to account for the complex relations between all the parameters where "quality" must be defined based on the final application.

In this work, it i is proposed to use hemp fibers (reinforcement) as a residues from the textile industry and ground tire rubber (impact modifier) as a post-consumer residue. To improve interfacial bonding, maleic anhydride grafted polyethylene was selected and high density polyethylene as a commercially available matrix. For each mechanical property (tension, flexion and impact), a non-linear regression model was obtained and the results were combined with the raw material costs to optimize the quality over cost ratio. Although the numerical values obtained are a function of the materials and processing conditions used, this methodology can be applied to any system to optimize formulations while simultaneously taking into account the economics and performances of the materials.

###

View the article here: http://www.eurekaselect.com/node/148321/article/optimization-of-hemp-ground-tire-rubber-high-density-polyethylene-composites-based-on-a-quality-over-cost-ratio

Reference: Yousefian H. (2017). Optimization of Hemp, Ground Tire Rubber, High Density Polyethylene Composites Based on a Quality Over Cost Ratio, Curr Applied Polymer Science., DOI: 10.2174/2452271601666161213164904

Current Applied Polymer Science

10.2174/1874306401610010058

Keywords

Article Information

Contact Information

How to Cite This Article

APA:
Bentham Science Publishers. (2017, May 23). Optimization of hemp-ground tire rubber/high density polyethylene composites. Brightsurf News. https://www.brightsurf.com/news/LP2Y6VKL/optimization-of-hemp-ground-tire-rubberhigh-density-polyethylene-composites.html
MLA:
"Optimization of hemp-ground tire rubber/high density polyethylene composites." Brightsurf News, May. 23 2017, https://www.brightsurf.com/news/LP2Y6VKL/optimization-of-hemp-ground-tire-rubberhigh-density-polyethylene-composites.html.