Bluesky Facebook Reddit Email

Two-pronged approach successfully targets DNA synthesis in leukemic cells

02.24.14 | Rockefeller University Press

Apple iPhone 17 Pro

Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.


A novel two-pronged strategy targeting DNA synthesis can treat leukemia in mice, according to a study in The Journal of Experimental Medicine .

Current treatments for acute lymphoblastic leukemia (ALL), an aggressive form of blood cancer, include conventional chemotherapy drugs that inhibit DNA synthesis. These drugs are effective but have serious side effects on normal dividing tissues.

In order to replicate, cells must make copies of their DNA, which is made up of building blocks called deoxyribonucleotide triphosphates (dNTPs). Cells can either make dNTPs from scratch (the "de novo" pathway) or by picking up the breakdown products of cells death (the "salvage" pathway). Caius Radu and colleagues at the University of California, Los Angeles now show that blocking the de novo pathway using thymidine causes leukemia cells to switch to the salvage pathway. This may explain why thymidine showed limited effectiveness as a single agent in clinical trials. Blocking both the de novo and salvage pathways was lethal for leukemic cells. The authors also found that a novel small molecule inhibitor of the salvage pathway enzyme deoxycytidine kinase blocked leukemia growth in mice in combination with thymidine (to inhibit the de novo pathway). Importantly, there was no significant toxicity to normal blood cell development. Why leukemic cells and normal blood cell precursors respond so differently to this treatment requires further investigation.

According to Radu, "this new dual targeting approach shows that we can overcome the redundancy in DNA synthesis in ALL cells and identifies a potential target for metabolic intervention in ALL, and possibly in other hematological cancers."

This interdisciplinary study not only advances our understanding of DNA synthesis in leukemic cells but also identifies targeted metabolic intervention as a new therapeutic approach in ALL. Clinical trials will be required to establish whether these promising findings will translate into a new therapeutic approach for ALL.

Nathanson, D.A., et al. 2014. J. Exp. Med. doi:10.1084/jem.20131738

About The Journal of Experimental Medicine

The Journal of Experimental Medicine ( JEM ) is published by The Rockefeller University Press. All editorial decisions on manuscripts submitted are made by active scientists in conjunction with our in-house scientific editors. JEM content is posted to PubMed Central, where it is available to the public for free six months after publication. Authors retain copyright of their published works and third parties may reuse the content for non-commercial purposes under a creative commons license. For more information, please visit http://www.jem.org .

Research reported in the press release was supported by the National Cancer Institute and the National Institutes of Health.

Journal of Experimental Medicine

Keywords

Article Information

Contact Information

Rita Sullivan
Rockefeller University Press
rsullivan@rockefeller.edu

How to Cite This Article

APA:
Rockefeller University Press. (2014, February 24). Two-pronged approach successfully targets DNA synthesis in leukemic cells. Brightsurf News. https://www.brightsurf.com/news/LVWEYKE8/two-pronged-approach-successfully-targets-dna-synthesis-in-leukemic-cells.html
MLA:
"Two-pronged approach successfully targets DNA synthesis in leukemic cells." Brightsurf News, Feb. 24 2014, https://www.brightsurf.com/news/LVWEYKE8/two-pronged-approach-successfully-targets-dna-synthesis-in-leukemic-cells.html.