Bluesky Facebook Reddit Email

Life Sciences

Comprehensive exploration of living organisms, biological systems, and life processes across all scales from molecules to ecosystems. Encompasses cutting-edge research in biology, genetics, molecular biology, ecology, biochemistry, microbiology, botany, zoology, evolutionary biology, genomics, and biotechnology. Investigates cellular mechanisms, organism development, genetic inheritance, biodiversity conservation, metabolic processes, protein synthesis, DNA sequencing, CRISPR gene editing, stem cell research, and the fundamental principles governing all forms of life on Earth.

447,757 articles | 2542 topics

Health and Medicine

Comprehensive medical research, clinical studies, and healthcare sciences focused on disease prevention, diagnosis, and treatment. Encompasses clinical medicine, public health, pharmacology, epidemiology, medical specialties, disease mechanisms, therapeutic interventions, healthcare innovation, precision medicine, telemedicine, medical devices, drug development, clinical trials, patient care, mental health, nutrition science, health policy, and the application of medical science to improve human health, wellbeing, and quality of life across diverse populations.

431,843 articles | 751 topics

Social Sciences

Comprehensive investigation of human society, behavior, relationships, and social structures through systematic research and analysis. Encompasses psychology, sociology, anthropology, economics, political science, linguistics, education, demography, communications, and social research methodologies. Examines human cognition, social interactions, cultural phenomena, economic systems, political institutions, language and communication, educational processes, population dynamics, and the complex social, cultural, economic, and political forces shaping human societies, communities, and civilizations throughout history and across the contemporary world.

260,756 articles | 745 topics

Physical Sciences

Fundamental study of the non-living natural world, matter, energy, and physical phenomena governing the universe. Encompasses physics, chemistry, earth sciences, atmospheric sciences, oceanography, materials science, and the investigation of physical laws, chemical reactions, geological processes, climate systems, and planetary dynamics. Explores everything from subatomic particles and quantum mechanics to planetary systems and cosmic phenomena, including energy transformations, molecular interactions, elemental properties, weather patterns, tectonic activity, and the fundamental forces and principles underlying the physical nature of reality.

257,913 articles | 1552 topics

Applied Sciences and Engineering

Practical application of scientific knowledge and engineering principles to solve real-world problems and develop innovative technologies. Encompasses all engineering disciplines, technology development, computer science, artificial intelligence, environmental sciences, agriculture, materials applications, energy systems, and industrial innovation. Bridges theoretical research with tangible solutions for infrastructure, manufacturing, computing, communications, transportation, construction, sustainable development, and emerging technologies that advance human capabilities, improve quality of life, and address societal challenges through scientific innovation and technological progress.

225,386 articles | 998 topics

Scientific Community

Study of the practice, culture, infrastructure, and social dimensions of science itself. Addresses how science is conducted, organized, communicated, and integrated into society. Encompasses research funding mechanisms, scientific publishing systems, peer review processes, academic ethics, science policy, research institutions, scientific collaboration networks, science education, career development, research programs, scientific methods, science communication, and the sociology of scientific discovery. Examines the human, institutional, and cultural aspects of scientific enterprise, knowledge production, and the translation of research into societal benefit.

193,043 articles | 157 topics

Space Sciences

Comprehensive study of the universe beyond Earth, encompassing celestial objects, cosmic phenomena, and space exploration. Includes astronomy, astrophysics, planetary science, cosmology, space physics, astrobiology, and space technology. Investigates stars, galaxies, planets, moons, asteroids, comets, black holes, nebulae, exoplanets, dark matter, dark energy, cosmic microwave background, stellar evolution, planetary formation, space weather, solar system dynamics, the search for extraterrestrial life, and humanity's efforts to explore, understand, and unlock the mysteries of the cosmos through observation, theory, and space missions.

29,662 articles | 175 topics

Research Methods

Comprehensive examination of tools, techniques, methodologies, and approaches used across scientific disciplines to conduct research, collect data, and analyze results. Encompasses experimental procedures, analytical methods, measurement techniques, instrumentation, imaging technologies, spectroscopic methods, laboratory protocols, observational studies, statistical analysis, computational methods, data visualization, quality control, and methodological innovations. Addresses the practical techniques and theoretical frameworks enabling scientists to investigate phenomena, test hypotheses, gather evidence, ensure reproducibility, and generate reliable knowledge through systematic, rigorous investigation across all areas of scientific inquiry.

21,889 articles | 139 topics

Mathematics

Study of abstract structures, patterns, quantities, relationships, and logical reasoning through pure and applied mathematical disciplines. Encompasses algebra, calculus, geometry, topology, number theory, analysis, discrete mathematics, mathematical logic, set theory, probability, statistics, and computational mathematics. Investigates mathematical structures, theorems, proofs, algorithms, functions, equations, and the rigorous logical frameworks underlying quantitative reasoning. Provides the foundational language and tools for all scientific fields, enabling precise description of natural phenomena, modeling of complex systems, and the development of technologies across physics, engineering, computer science, economics, and all quantitative sciences.

3,023 articles | 113 topics

Apple iPhone 17 Pro

Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.

Paving the way for spintronic RAMs: A deeper look into a powerful spin phenomenon

Researchers at Tokyo Institute of Technology developed a novel strategy to exploit spin-related phenomena in topological materials, achieving a giant unidirectional spin Hall magnetoresistance ratio of over 1%. This breakthrough could lead to the development of spintronics and outperform current storage devices with improved power cons...

Computing with molecules: A big step in molecular spintronics

A team of researchers from Kiel University has developed more stable spin states in molecules, enabling potential applications in computing and data storage. The newly created compounds feature three properties that are coupled together to create a self-assembling switch, revolutionizing the field of molecular spintronics.

Toward more efficient computing, with magnetic waves

MIT researchers have devised a novel circuit design that enables precise control of computing with magnetic waves, without any extra components or electrical current. This approach leverages the spin wave property in magnetic materials to produce measurable output that can be correlated to computation.

New spin directions in pyrite an encouraging sign for future spintronics

Researchers have discovered unconventional energy- and direction-dependent spin textures on the surface of pyrite-type crystals, enabling both in-plane and out-of-plane spin components. This finding opens new possibilities for topological spintronics devices and unlocks the potential of pyrite in future spintronics applications.

Kestrel 3000 Pocket Weather Meter

Kestrel 3000 Pocket Weather Meter measures wind, temperature, and humidity in real time for site assessments, aviation checks, and safety briefings.

Small magnets reveal big secrets

A microscopic process of electron spin dynamics in nanoparticles has been identified, which could have wide-ranging impact on applications in medicine, quantum computation, and spintronics. The research provides insights into the principles of energy dissipation in nanomagnets, enabling engineers to build better devices.

SAMSUNG T9 Portable SSD 2TB

SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.

The best of two worlds: Magnetism and Weyl semimetals

Scientists have discovered magnetic Weyl semimetals, which exhibit both topological and magnetic properties. These materials have the potential to enable dissipationless transport and revolutionize data storage and energy conversion.

Spin devices get a paint job

Physicists have developed a novel method to create high-performance spintronic devices using organic molecules, which can be easily configured for different functions. The new fabrication method uses layers of molecules that can be painted or printed onto metals, offering a promising alternative to traditional materials.

Weyl fermions discovered in another class of materials

Researchers at Paul Scherrer Institute successfully prove existence of Weyl fermions in a paramagnetic material with slow magnetic fluctuations, expanding possibilities for spintronics and future electronics. This discovery could lead to more efficient transportation of information, potentially revolutionizing computer technology.

Rigol DP832 Triple-Output Bench Power Supply

Rigol DP832 Triple-Output Bench Power Supply powers sensors, microcontrollers, and test circuits with programmable rails and stable outputs.

A new 2D magnet draws future devices closer

Researchers discovered a new metallic and air-stable 2D magnet in platinum diselenide (PtSe2), which can be manipulated by strategically placing defects across its surface. This breakthrough has the potential to enable ultra-thin metallic magnets for future spin-transfer torque magnetic random-access memory devices.

Small currents for big gains in spintronics

Scientists at the University of Tokyo developed an efficient magnetization reversal component using gallium manganese arsenide, reducing current densities by one to two orders of magnitude compared to previous methods. This breakthrough aims to advance spintronics, a promising technology for low-power logic and memory devices.

Neuron and synapse-mimetic spintronics devices developed

Researchers from Tohoku University have developed artificial neuron and synapse devices using spintronics technology, mimicking the brain's architecture. The devices demonstrated fundamental behavior of biological neurons and synapses, including leaky integrate-and-fire and spike-timing-dependent plasticity.

Nanoparticles help realize 'spintronic' devices

Researchers have demonstrated a new way to perform functions essential to future computation at speeds trillions of times faster than current commercial devices. The team created a nanoscale spintronic semiconductor device that can partially switch between specific magnetic states in under a picosecond.

Sony Alpha a7 IV (Body Only)

Sony Alpha a7 IV (Body Only) delivers reliable low-light performance and rugged build for astrophotography, lab documentation, and field expeditions.

Spin devices rev up

Researchers from University of Tokyo discover magnetic spin Hall effect in non-collinear antiferromagnet Mn3Sn, enabling efficient spin current transfer. This could lead to high-speed and high-capacity devices with improved power efficiency.

New quantum system could help design better spintronics

Researchers created a new testing ground for quantum systems to study spin current decay and its effects on spintronics. This breakthrough may lead to advances in computing and electronic devices that use spin instead of electrons' charge.

Spintronics 'miracle material' put to the test

Physicists at the University of Utah have built two devices using perovskite to demonstrate its potential in spintronics. The materials' properties bring the dream of a spintronic transistor one step closer to reality.

Davis Instruments Vantage Pro2 Weather Station

Davis Instruments Vantage Pro2 Weather Station offers research-grade local weather data for networked stations, campuses, and community observatories.

Overtones can provide faster data communication

The team produced spintronic oscillators that strengthen spin wave signals in several steps, demonstrating a new phenomenon. They showed sharp jumps in frequency from the fundamental tone to much higher frequencies using overtones, paving the way for faster data transmission rates in wireless communication.

Pressure tuned magnetism paves the way for novel electronic devices

A team of researchers has found a surprising link between emergent magnetism and mechanical pressure in artificially engineered non-magnetic oxide heterostructures. The study reveals that the strength of magnetism can be controlled by applying pressure to the material, opening new routes for developing novel spintronic devices.

Garmin GPSMAP 67i with inReach

Garmin GPSMAP 67i with inReach provides rugged GNSS navigation, satellite messaging, and SOS for backcountry geology and climate field teams.

When heat ceases to be a mystery, spintronics becomes more real

A Polish-German team of physicists has described the dynamic phenomena occurring at the interface between a ferromagnetic metal and a semiconductor, filling the 'thermal' gap in material knowledge. The study used computational models to simulate atomic vibrations and showed that the interface exhibits unique patterns.

NUS engineers invent groundbreaking spin-based memory device

Researchers have developed a novel ferrimagnetic spintronic memory device, outperforming traditional ferromagnet-based memories in terms of stability and efficiency. The new technology has the potential to accelerate the growth of the spintronic industry.

Reflecting antiferromagnetic arrangements

A team demonstrated an x-ray imaging technique that can image antiphase magnetic domains in antiferromagnets, a key step towards controlling their magnetic structure. This could lead to the development of smaller, faster, and more robust electronics using spintronics.

CalDigit TS4 Thunderbolt 4 Dock

CalDigit TS4 Thunderbolt 4 Dock simplifies serious desks with 18 ports for high-speed storage, monitors, and instruments across Mac and PC setups.

Spintronics: Controlling magnetic spin with electric fields

Researchers at EPFL demonstrated electric field control of spin in germanium telluride and multiferroic semiconductors using SARPES technique. This breakthrough enables programmable semiconductor-based spintronics with reduced energy consumption.

Scientists find ordered magnetic patterns in disordered magnetic material

Researchers at Berkeley Lab discovered chirality in domain walls of amorphous materials, which could enable faster, smaller data storage. The study used high-resolution microscopy techniques to confirm nanoscale magnetic features, opening possibilities for controlling magnetic domains with temperature and light.

Creality K1 Max 3D Printer

Creality K1 Max 3D Printer rapidly prototypes brackets, adapters, and fixtures for instruments and classroom demonstrations at large build volume.

Switched on: a breakthrough for spintronics

A new tri-layer structure made of Cr2O3, YIG, and Pt enables significant control over the transmission of spin current at room temperature. This discovery is a major breakthrough in spintronics, paving the way for more efficient information processing devices.

Graphene flakes for future transistors

Researchers have discovered graphene nanoflakes that can exploit quantum effects to modulate current flow. The flakes also exhibit new magnetic properties, enabling the creation of spin currents and potential applications in spintronics.

Magnon spin currents can be controlled via spin valve structure

A team of physicists controlled magnon spin currents using a spin valve structure, allowing for the implementation of a switch-like device that suppresses or forwards magnon current as an electrical signal. The discovery enables wave-based computing and improved energy efficiency in data processing.

Apple AirPods Pro (2nd Generation, USB-C)

Apple AirPods Pro (2nd Generation, USB-C) provide clear calls and strong noise reduction for interviews, conferences, and noisy field environments.

MIPT physicists tune a spin diode

Researchers at MIPT created a spin diode by placing ferromagnetic layers between two antiferromagnetic materials, allowing for tunable resistance and resonant frequency. This design triples the frequency range of conventional spin diodes while maintaining sensitivity comparable to semiconductor analogs.

Practical spin wave transistor one step closer

Researchers at the University of Groningen have successfully controlled spin waves in a magnet using an electrical current. This achievement is a significant step towards developing spintronics, which could lead to faster and more energy-efficient computers.

New UC Riverside research advances spintronics technology

Researchers at UC Riverside have developed methods to detect signals from spintronic components made of low-cost metals and silicon, overcoming a major barrier to wide application. This breakthrough enables the creation of spintronic computers that generate little heat and use relatively minuscule amounts of electricity.

GQ GMC-500Plus Geiger Counter

GQ GMC-500Plus Geiger Counter logs beta, gamma, and X-ray levels for environmental monitoring, training labs, and safety demonstrations.

Diamonds show promise for spintronic devices

Researchers have demonstrated the potential for diamond as a material for spintronics, with strong spin-orbit coupling and tunable magnetic field control. Diamond's ease of processing and fabrication make it an attractive alternative to traditional semiconductor materials.

X-ray experiments suggest high tunability of 2-D material

Researchers used a new platform, MAESTRO, to observe the electronic structure of a 2-D semiconductor material, tungsten disulfide (WS2), at microscale resolution. The study suggests that WS2 may be highly tunable, with possible applications for spintronics and electronics.

Mysteries of a promising spintronic material revealed

Researchers at UC Riverside used ultraviolet Raman spectroscopy to investigate the strength of electron spin interactions with phonons in antiferromagnetic nickel oxide crystals. The study sheds light on long-standing puzzles surrounding this material and has important implications for developing spintronic devices.

Meta Quest 3 512GB

Meta Quest 3 512GB enables immersive mission planning, terrain rehearsal, and interactive STEM demos with high-resolution mixed-reality experiences.

Spin-current generation gets mid-IR boost with plasmonic metamaterial

Researchers in Japan have developed a wavelength-selective plasmonic metamaterial absorber to enhance the generation of spin currents from heat produced in the mid-infrared regime. The unique combination enables stronger light absorption and shows excellent tenability of these metamaterials' resonance wavelengths.

Apple Watch Series 11 (GPS, 46mm)

Apple Watch Series 11 (GPS, 46mm) tracks health metrics and safety alerts during long observing sessions, fieldwork, and remote expeditions.

Vortex-antivortex pairs found in magnetic trilayers

A team of researchers has discovered magnetic vortex-antivortex pairs arising from correlated electron spins in a newly engineered trilayer material. The finding could advance memory cells and points to the potential development of 3-D magnetic logic circuits.

2-D material's traits could send electronics R&D spinning in new directions

Researchers have discovered a new 2D material with unique spin properties, making it a promising candidate for spintronics applications. The material's electronic structure was characterized using X-ray and scanning tunneling microscopy techniques, revealing its potential to carry data more efficiently and with lesser power demands.

Researchers flip the script on magnetocapacitance

A new phenomenon in spintronics was discovered by altering capacitance by manipulating spins in the opposite way from normal magnetocapacitance. This inverse effect allows for more parameter space to design devices, potentially useful in magnetic sensors for computer hard drives and random access memory chips.

A new spin on electronics

Researchers at University of Utah have discovered that organic-inorganic hybrid perovskites possess contradictory properties necessary to make spintronic devices work, enabling exponentially more data processing and overcoming size limitations in traditional electronics.

Berkeley Lab scientists discover new atomically layered, thin magnet

Researchers at Berkeley Lab have discovered a new atomically layered, thin magnet in a two-dimensional material, revealing intrinsic ferromagnetism and unprecedented control over ferromagnetic behavior. The discovery has major implications for nanoscale memory, spintronic devices, and magnetic sensors.

Celestron NexStar 8SE Computerized Telescope

Celestron NexStar 8SE Computerized Telescope combines portable Schmidt-Cassegrain optics with GoTo pointing for outreach nights and field campaigns.

Spin-resolved oscilloscope for charge and spin signals

The Tokyo Institute of Technology and Nippon Telegraph and Telephone Corporation have developed a spin-resolved oscilloscope to measure charge and spin signals. The device enables the observation of spin-charge-separation processes, paving the way for future plasmonics and spintronics applications.

A new class of materials could realize quantum computers

Scientists at EPFL and PSI have discovered a new class of multiferroic Rashba semiconductors, which can be used to develop spintronics. These materials exhibit exotic properties, including the interaction between electric and magnetic fields, and could pave the way for future quantum computers.

Apple MacBook Pro 14-inch (M4 Pro)

Apple MacBook Pro 14-inch (M4 Pro) powers local ML workloads, large datasets, and multi-display analysis for field and lab teams.