Bluesky Facebook Reddit Email

Life Sciences

Comprehensive exploration of living organisms, biological systems, and life processes across all scales from molecules to ecosystems. Encompasses cutting-edge research in biology, genetics, molecular biology, ecology, biochemistry, microbiology, botany, zoology, evolutionary biology, genomics, and biotechnology. Investigates cellular mechanisms, organism development, genetic inheritance, biodiversity conservation, metabolic processes, protein synthesis, DNA sequencing, CRISPR gene editing, stem cell research, and the fundamental principles governing all forms of life on Earth.

447,757 articles | 2542 topics

Health and Medicine

Comprehensive medical research, clinical studies, and healthcare sciences focused on disease prevention, diagnosis, and treatment. Encompasses clinical medicine, public health, pharmacology, epidemiology, medical specialties, disease mechanisms, therapeutic interventions, healthcare innovation, precision medicine, telemedicine, medical devices, drug development, clinical trials, patient care, mental health, nutrition science, health policy, and the application of medical science to improve human health, wellbeing, and quality of life across diverse populations.

431,843 articles | 751 topics

Social Sciences

Comprehensive investigation of human society, behavior, relationships, and social structures through systematic research and analysis. Encompasses psychology, sociology, anthropology, economics, political science, linguistics, education, demography, communications, and social research methodologies. Examines human cognition, social interactions, cultural phenomena, economic systems, political institutions, language and communication, educational processes, population dynamics, and the complex social, cultural, economic, and political forces shaping human societies, communities, and civilizations throughout history and across the contemporary world.

260,756 articles | 745 topics

Physical Sciences

Fundamental study of the non-living natural world, matter, energy, and physical phenomena governing the universe. Encompasses physics, chemistry, earth sciences, atmospheric sciences, oceanography, materials science, and the investigation of physical laws, chemical reactions, geological processes, climate systems, and planetary dynamics. Explores everything from subatomic particles and quantum mechanics to planetary systems and cosmic phenomena, including energy transformations, molecular interactions, elemental properties, weather patterns, tectonic activity, and the fundamental forces and principles underlying the physical nature of reality.

257,913 articles | 1552 topics

Applied Sciences and Engineering

Practical application of scientific knowledge and engineering principles to solve real-world problems and develop innovative technologies. Encompasses all engineering disciplines, technology development, computer science, artificial intelligence, environmental sciences, agriculture, materials applications, energy systems, and industrial innovation. Bridges theoretical research with tangible solutions for infrastructure, manufacturing, computing, communications, transportation, construction, sustainable development, and emerging technologies that advance human capabilities, improve quality of life, and address societal challenges through scientific innovation and technological progress.

225,386 articles | 998 topics

Scientific Community

Study of the practice, culture, infrastructure, and social dimensions of science itself. Addresses how science is conducted, organized, communicated, and integrated into society. Encompasses research funding mechanisms, scientific publishing systems, peer review processes, academic ethics, science policy, research institutions, scientific collaboration networks, science education, career development, research programs, scientific methods, science communication, and the sociology of scientific discovery. Examines the human, institutional, and cultural aspects of scientific enterprise, knowledge production, and the translation of research into societal benefit.

193,043 articles | 157 topics

Space Sciences

Comprehensive study of the universe beyond Earth, encompassing celestial objects, cosmic phenomena, and space exploration. Includes astronomy, astrophysics, planetary science, cosmology, space physics, astrobiology, and space technology. Investigates stars, galaxies, planets, moons, asteroids, comets, black holes, nebulae, exoplanets, dark matter, dark energy, cosmic microwave background, stellar evolution, planetary formation, space weather, solar system dynamics, the search for extraterrestrial life, and humanity's efforts to explore, understand, and unlock the mysteries of the cosmos through observation, theory, and space missions.

29,662 articles | 175 topics

Research Methods

Comprehensive examination of tools, techniques, methodologies, and approaches used across scientific disciplines to conduct research, collect data, and analyze results. Encompasses experimental procedures, analytical methods, measurement techniques, instrumentation, imaging technologies, spectroscopic methods, laboratory protocols, observational studies, statistical analysis, computational methods, data visualization, quality control, and methodological innovations. Addresses the practical techniques and theoretical frameworks enabling scientists to investigate phenomena, test hypotheses, gather evidence, ensure reproducibility, and generate reliable knowledge through systematic, rigorous investigation across all areas of scientific inquiry.

21,889 articles | 139 topics

Mathematics

Study of abstract structures, patterns, quantities, relationships, and logical reasoning through pure and applied mathematical disciplines. Encompasses algebra, calculus, geometry, topology, number theory, analysis, discrete mathematics, mathematical logic, set theory, probability, statistics, and computational mathematics. Investigates mathematical structures, theorems, proofs, algorithms, functions, equations, and the rigorous logical frameworks underlying quantitative reasoning. Provides the foundational language and tools for all scientific fields, enabling precise description of natural phenomena, modeling of complex systems, and the development of technologies across physics, engineering, computer science, economics, and all quantitative sciences.

3,023 articles | 113 topics

Making the switch, this time with an insulator

Researchers at Colorado State University have demonstrated a new method for switching magnetic moments of electrons in a thin film of barium ferrite, a magnetic insulator. This breakthrough could lead to more efficient and lower power computer memory devices.

Fluke 87V Industrial Digital Multimeter

Fluke 87V Industrial Digital Multimeter is a trusted meter for precise measurements during instrument integration, repairs, and field diagnostics.

Best of both worlds

Ferromagnetic semiconductors have overcome a longstanding physical constraint by growing iron-doped semiconductors at room temperature. This breakthrough enables new opportunities for utilizing spin degrees of freedom in semiconductor devices, such as spin transistors.

Spintronics for future information technologies

Researchers have successfully controlled spin currents in topological insulators using circularly polarised laser light, opening the door for ultra-energy efficient data processing. The findings, published in Physical Review B, demonstrate the potential of these materials for spintronic applications.

Spin dynamics in an atomically thin semi-conductor

Researchers at the National University of Singapore and Yale-NUS College have established the mechanisms for spin motion in molybdenum disulfide. This discovery resolves a research question on electron spin properties in single layers of 2D materials, paving the way for next-generation spintronics devices with lower energy consumption.

Apple iPhone 17 Pro

Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.

Clues on the development of magnetic sensors with pure spin current

A team from Osaka University successfully detected magnetic fluctuations using pure spin current, which can probe spin properties in a sensitive manner without net charge current. This discovery could lead to the development of more efficient and low-energy consumption electronic devices.

Superconductivity trained to promote magnetization

Researchers at Lomonosov Moscow State University have discovered a phenomenon where superconductivity promotes magnetization under certain conditions. This finding could lead to the development of spintronics devices that are more energy-efficient and stable, potentially replacing traditional computing methods.

Spintronics: Molecules stabilizing magnetism

Researchers have discovered a way to control magnetism using organic molecules, potentially leading to more efficient and cost-effective storage technologies. The study found that three molecular layers of phtalocynine can stabilize the magnetic orientation of cobalt surfaces, even in the presence of external magnetic fields or cooling.

Spintronics just got faster

EPFL scientists have shown that electrons can jump through spins much faster than previously thought, challenging the notion of intermediate steps between spin jumps. The finding has profound implications for both technology and fundamental physics and chemistry, potentially offering long-awaited solutions to spintronics limitations.

AmScope B120C-5M Compound Microscope

AmScope B120C-5M Compound Microscope supports teaching labs and QA checks with LED illumination, mechanical stage, and included 5MP camera.

Quantum 'gruyères' for spintronics of the future

Researchers at SISSA propose a new family of materials whose topological state can be directly observed, simplifying the development of spintronics and quantum computing. The discovery uses mathematical models and simulations to identify materials with 'spectacular' features that are easily detected.

Drexel materials scientists putting a new spin on computing memory

Researchers at Drexel University are exploring new spintronic materials to create more energy-efficient computing memories. By understanding the physical principles behind spintronics, they hope to develop a framework to unlock new possibilities in data storage and processing.

Graphene looking promising for future spintronic devices

Researchers at Chalmers University of Technology have discovered that large area graphene can preserve electron spin over extended periods and communicate it over greater distances than previously known. This breakthrough has opened the door for developing faster and more energy-efficient memory and processors in computers.

Davis Instruments Vantage Pro2 Weather Station

Davis Instruments Vantage Pro2 Weather Station offers research-grade local weather data for networked stations, campuses, and community observatories.

Beyond silicon: New semiconductor moves spintronics toward reality

A new semiconductor compound is bringing fresh momentum to the field of spintronics, an emerging breed of computing device that may lead to smaller, faster, less power-hungry electronics. The compound's unique low-symmetry crystal structure offers much greater flexibility, enabling precise control over conductivity and magnetism.

A new spin on spintronics

A team of researchers from the University of Michigan and Western Michigan University has developed a new radiation-resistant spintronic material that can maintain its spin-dependence after being irradiated. This breakthrough could enable electronic devices to work in harsh environments, such as space-based communications satellites.

Insight into inner magnetic layers

Measurements at BESSY II have shown how spin filters form within magnetic sandwiches, enhancing understanding of processes critical for future TMR data storage devices and other spintronic components. The discovery reveals new interfacial effects that strongly influence the amplitude of tunnel magnetoresistance.

Garmin GPSMAP 67i with inReach

Garmin GPSMAP 67i with inReach provides rugged GNSS navigation, satellite messaging, and SOS for backcountry geology and climate field teams.

Switching to spintronics

Scientists successfully reversed magnetization direction in a multiferroic device using an electric field, overcoming thermodynamic barriers. The two-step switching process relies on ferroelectric polarization and oxygen octahedral rotation.

SAMSUNG T9 Portable SSD 2TB

SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.

New electron spin secrets revealed

Researchers have found a novel link between magnetism and electricity, enabling the generation of high-frequency alternating currents. This breakthrough could lead to new detection techniques for magnetic information and improve spintronics technology.

A novel platform for future spintronic technologies

Researchers have discovered a new way to control electron spin in an insulating material, paving the way for more efficient spintronics devices. This breakthrough could lead to the development of spin-polarized materials and directly observe elusive Majorana fermions.

Meta Quest 3 512GB

Meta Quest 3 512GB enables immersive mission planning, terrain rehearsal, and interactive STEM demos with high-resolution mixed-reality experiences.

A new, tunable device for spintronics

Scientists from the University of Mainz have created a tunable spin-charge converter based on GaAs, which can transform charge currents into spin currents with high efficiency. The device leverages the spin-Hall effect and electric field manipulation to achieve this goal.

University of Illinois study advances limits for ultrafast nano-devices

Researchers at the University of Illinois have developed a new method to generate spin currents in nanoscale devices, enabling faster operation of magnetic memory devices. The technique uses temperature differences to transport spin-angular-momentum, overcoming limitations of traditional electrical current-based methods.

Advanced light source provides new look at skyrmions

Skyrmions, subatomic quasiparticles that could play a key role in future spintronic technologies, have been observed for the first time using x-rays. Researchers found two distinct skyrmion sub-lattices that rotate with respect to each other, creating a moiré-like pattern.

Celestron NexStar 8SE Computerized Telescope

Celestron NexStar 8SE Computerized Telescope combines portable Schmidt-Cassegrain optics with GoTo pointing for outreach nights and field campaigns.

Breakthrough for information technology using Heusler materials

Researchers at Johannes Gutenberg University Mainz have directly observed 100 percent spin polarization of a Heusler compound, paving the way for future development of high-performance spintronic devices. The study's findings provide a cornerstone for innovative applications in hard disk reader heads and non-volatile storage elements.

Harnessing magnetic vortices for making nanoscale antennas

Researchers at Brookhaven National Laboratory have successfully synchronized magnetic spins in nanoscale devices to build tiny yet more powerful signal-generating or receiving antennas. The technology harnesses the power of an electron's spin, opening doors for novel types of antennas and electronics.

Ion beams pave way to new kinds of valves for use in spintronics

Scientists create magnetically structured materials by irradiating iron aluminum alloy with neon ions, enabling the creation of spin valves that can function as magnetic storage media. The technology uses electron charge and inherent magnetic properties for information storage and processing.

Apple AirPods Pro (2nd Generation, USB-C)

Apple AirPods Pro (2nd Generation, USB-C) provide clear calls and strong noise reduction for interviews, conferences, and noisy field environments.

A deeper look at interfaces

Researchers developed a new technique called SWARPES to study electronic properties at buried interfaces in metal oxides. This allows for the selective examination of subsurface interfaces with soft or hard x-rays.

New magnetic semiconductor material holds promise for 'spintronics'

Researchers at North Carolina State University have created a new compound, strontium tin oxide (Sr3SnO), that can be integrated into silicon chips and exhibits dilute magnetic semiconductor properties. This material could enable the development of spin-based devices, or spintronics, which rely on magnetic forces to operate.

Controlling magnetic clouds in graphene

Researchers at the University of Manchester have created elementary magnetic moments in graphene and controlled their switching. This breakthrough has significant implications for spintronics, enabling active devices with improved performance.

DJI Air 3 (RC-N2)

DJI Air 3 (RC-N2) captures 4K mapping passes and environmental surveys with dual cameras, long flight time, and omnidirectional obstacle sensing.

Study suggests second life for possible spintronic materials

A new study suggests that scientists can create a stable structure with manganese and gallium nitride, which could be used in spintronics devices at or above room temperature. By incorporating a uniform layer and heating the sample, researchers were able to form a manganese-nitrogen bond that remains stable even at high temperatures.

Promising doped zirconia

Researchers have explored iron-doped zirconia, bridging the gap between theoretical predictions and experimental measurements. The study found that oxygen vacancies play a crucial role in providing its unique electronic and magnetic properties.

New magnetic graphene may revolutionize electronics

Researchers have successfully given graphene magnetic properties, opening up new possibilities for the development of graphene-based spintronics. This breakthrough has the potential to transform the electronics industry by adding a new dimension to traditional electronics.

Spintronics discovery

Researchers at University of Delaware confirm presence of magnetic field generated by electrons, expanding potential for harnessing spin properties. The finding is significant for developing next-generation spintronic devices and controlling magnetization.

Aranet4 Home CO2 Monitor

Aranet4 Home CO2 Monitor tracks ventilation quality in labs, classrooms, and conference rooms with long battery life and clear e-ink readouts.

Power spintronics: Producing AC voltages by manipulating magnetic fields

Researchers have developed a novel application of spintronics that converts magnetic energy to electric voltage efficiently and directly. The device utilizes magnetic nanostructures and manipulates magnetization dynamics to generate alternating current (AC) voltages from direct current (DC) magnetic fields.

Important progress for spintronics

Researchers at Linköping University have developed a world's first spin amplifier that can be used at room temperature, a crucial step towards spintronics. This achievement has significant implications for the future of electronics and data processing.

New finding could pave way to faster, smaller electronics

University of California researchers use hard X-ray angle-resolved photoemission spectroscopy to study gallium manganese arsenide, a material with potential in spintronics. The study reveals fundamental understanding of electronic interactions, suggesting future materials development.

Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C)

Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C) keeps Macs, tablets, and meters powered during extended observing runs and remote surveys.

Magnetic vortex reveals key to spintronic speed limit

Researchers at Brookhaven National Laboratory precisely measured a key parameter of electron interactions called non-adiabatic spin torque, guiding the reading and writing of digital information. The findings define the upper limit on processing speed that may underlie a spintronic revolution.

A 'dirt cheap' magnetic field sensor from 'plastic paint'

University of Utah physicists created a spintronic device that uses MEH-PPV plastic paint to detect magnetic fields, showing exceptional impact in real-world applications. The new magnetometer can accurately measure fields ranging from weak to strong, with potential consumer products on the market in three years or less.

Apple Watch Series 11 (GPS, 46mm)

Apple Watch Series 11 (GPS, 46mm) tracks health metrics and safety alerts during long observing sessions, fieldwork, and remote expeditions.

Solving a spintronic mystery

Researchers at Berkeley Lab and Notre Dame have determined the origin of charge-carriers in gallium manganese arsenide, a material promising for spintronic devices. The study reveals that holes controlling Curie temperature are located in an impurity band, opening possibilities to expand its width and boost performance.

Strain and spin may enable ultra-low-energy computing

By combining spintronics and straintronics, researchers created an ultra-low-power integrated circuit that harnesses ambient energy for computation. The proposed design uses multiferroic composite structures to achieve significant energy savings, potentially powering implantable medical devices and buoy-mounted computers.

Important step in the next generation of computing

Researchers at the University of Cambridge have developed a new, more efficient way of generating spin current using collective motion of spins called spin waves. This breakthrough addresses a major obstacle in spintronics, a technology that could radically change computing with high-speed, high-density and low-power consumption.

Putting a new spin on computing

Researchers develop protocol using existing technology to measure and manipulate magnetic spin of electrons for spintronics applications. This breakthrough aims to overcome limitations of conventional computing devices, such as power consumption and data loss.

Rigol DP832 Triple-Output Bench Power Supply

Rigol DP832 Triple-Output Bench Power Supply powers sensors, microcontrollers, and test circuits with programmable rails and stable outputs.

New spin on graphene

Researchers at the University of Manchester have discovered a new way to interconnect electron spin and charge in graphene, enabling direct manipulation of electric current using microelectronics. This breakthrough has significant implications for spintronics, with potential applications in sensors, memories, and transistors.

Researchers advance toward hybrid spintronic computer chips

Hybrid spintronic computer chips are being developed using a combination of inorganic and organic materials. The new technology could lead to computers that require less power and produce less heat, enabling instant on and flexibility. This breakthrough promises significant advances in information processing.

Enhancing the magnetism

Researchers at Berkeley Lab have enhanced spontaneous magnetization in special versions of bismuth ferrite, creating a stable nanoscale mixture of rhombohedral and tetragonal phases. This allows for electric control of magnetization at room temperature, opening the door to spintronic devices.

Nikon Monarch 5 8x42 Binoculars

Nikon Monarch 5 8x42 Binoculars deliver bright, sharp views for wildlife surveys, eclipse chases, and quick star-field scans at dark sites.

Silicon spin transistors heat up and spins last longer

University of Utah researchers built spintronic transistors that aligned magnetic spins of electrons for a record period of time at room temperature. The achievement is a significant step towards the development of faster and more power-efficient spintronic devices using silicon chips.

Delving into manganite conductivity

Researchers have made a significant breakthrough in understanding manganite conductivity by linking it to the Jahn-Teller effect. At ambient pressure, manganites exhibit insulating properties, but applying intense pressure causes them to transition to a metallic state, which conducts electric charges.