Researchers created optimized DNA hydrogels with fewer nucleic acids, achieving efficient and sustained drug release. The new hydrogel units showed prolonged persistence of at least 168 hours post-administration in mice, contributing to anti-tumor effects.
A new nanotechnology-based drug delivery system has been developed to save patients from repeated surgeries. The approach, called Pericelle, uses a paste of nanoparticles containing hydrogel on transplanted veins to prevent blockages, which can lead to repeated surgeries in heart and dialysis patients.
Researchers at Terasaki Institute develop lipopeptide hydrogels to deliver peptide-based cancer vaccines, demonstrating sustained release and enhanced immune cell uptake. The system shows promise in overcoming limitations of traditional peptide-based vaccines.
SAMSUNG T9 Portable SSD 2TB
SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.
Researchers have developed an injectable hydrogel that targets rapid localized increase in bone density. The results show a four- to five-fold increase in bone density in the legs of rats with bone loss. The study combines systemic osteoporosis drugs with local hydrogel injections, offering hope for future fracture prevention therapies.
Researchers develop strategies to address mechanical and electrical properties, implantation, and multimodal functionality in hydrogel-based bioelectronics. The team explores conductive polymers, stimuli-responsive hydrogels, and wearable/implantable devices to create seamless human-body interfaces.
Researchers at POSTECH developed an innovative injectable adhesive hydrogel that regenerates bone using harmless visible light. The hydrogel addresses limitations of existing treatments by simultaneously achieving cross-linking and mineralization without separate bone grafts or adhesives.
Researchers at Caltech developed bioresorbable acoustic microrobots that can deliver therapeutics to specific sites within the body, decreasing bladder tumor size in mice. The microrobots use magnetic nanoparticles for precise targeting and are designed to be biocompatible and absorbable.
Apple iPhone 17 Pro
Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.
Researchers developed a new hydrogel that quickly neutralizes harmful acids and stabilizes waterlogged wood from shipwrecks. The gel is designed to disperse acid- and microbe-fighting compounds through the wood, gradually dissolving over time to avoid surface damage.
Researchers from UniSA have developed a simple strategy to increase seawater evaporation rates, making desalination more energy-efficient and sustainable. By introducing clay minerals into a photothermal hydrogel evaporator, they achieved a 18.8% higher evaporation rate for seawater compared to pure water.
Researchers from Tokyo University of Science have developed a novel gelation method using carbon dioxide to form hydrogels. The post-gelation release rate affects the degree of crosslinking and mechanical properties, providing insights for creating hydrogels suitable for medical applications.
Fluke 87V Industrial Digital Multimeter
Fluke 87V Industrial Digital Multimeter is a trusted meter for precise measurements during instrument integration, repairs, and field diagnostics.
The study presents a lignin-based hydrogel that combines mechanical strength with bioactivity, promoting wound healing and sustained drug release. The hydrogel's controlled-release properties make it an ideal candidate for treating complex wounds and reducing medication side effects.
Researchers design bioinspired hydrogels that mimic plant photosynthesis for clean hydrogen energy production. The study achieves significant boosts in the activity of water-splitting processes and produces more hydrogen compared to older techniques.
Researchers at EPFL have developed the e-Flower, a flower-shaped 3D microelectrode array that enables real-time recording of neural activity from 3D neural spheroids. This breakthrough technology allows for more accurate and gentle monitoring of brain cells, paving the way for further research on brain organoids.
Liquid-based electronic materials offer inherent flexibility and conformability, mitigating mechanical mismatches between human tissues and electronic devices. These materials have been demonstrated in various applications such as strain sensors, touch sensors, implantable stimulators, encapsulation solutions, and adhesives.
Researchers have developed a novel method to fabricate high-performance macrofibers with exceptional mechanical properties and humidity response using the TAT technique. The resulting fibers exhibit record tensile strength and rapid actuation in response to environmental moisture, making them ideal for various industries.
Kestrel 3000 Pocket Weather Meter
Kestrel 3000 Pocket Weather Meter measures wind, temperature, and humidity in real time for site assessments, aviation checks, and safety briefings.
Researchers at Michigan Medicine develop a composite hydrogel capable of steady, sustained drug release using ultrasound as a trigger. The fibrin hydrogel matrix vaporizes an emulsion upon exposure to ultrasound, releasing the encapsulated drug in a zero-order release process, providing consistent levels over time.
A researcher has developed a novel drug delivery system that transports medications to the inner ear to prevent cisplatin-induced hearing loss. The system uses hydrogels and nanoparticles to deliver drugs that block calcium damage or protect hair cells, showing promising results in early-stage studies.
Researchers have developed a semaglutide hydrogel that could reduce diabetes shots to once a month, improving drug adherence and quality of life. The hydrogel's slow release of semaglutide over one month was found to be well-tolerated in laboratory rats with no inflammatory reactions.
GQ GMC-500Plus Geiger Counter
GQ GMC-500Plus Geiger Counter logs beta, gamma, and X-ray levels for environmental monitoring, training labs, and safety demonstrations.
Researchers from the University of Leeds and international partners have created an oil-free super-lubricant from potato proteins, achieving near zero friction. The material uses natural protein building blocks with a lower carbon footprint, opening doors for sustainable biomedical applications and low-calorie foods.
Researchers developed a self-healing hydrogel dressing with structural color microspheres that can adhere to wounds under near-infrared irradiation. The composite microspheres promote extracellular matrix deposition, neovascularization, and efficient drug release through visual color changes.
Researchers created a virtual game environment and connected it to hydrogels, which improved their accuracy over time. The hydrogels used 'memory' to learn from previous patterns and improve their gameplay, with an improvement rate of up to 10%.
Scientists created a wearable sensor that can monitor cholesterol and lactate levels on dry skin, enabling early disease detection. The sensor overcomes existing challenges of traditional methods, promising new opportunities for remote patient monitoring and population-wide health screening.
Researchers at Technical University of Denmark developed a new biopolymer, PAMA, derived from bacteria to heal tissue. The PAMA bactogel shows significant muscle regeneration properties and nearly 100% mechanical recovery in rats.
AmScope B120C-5M Compound Microscope
AmScope B120C-5M Compound Microscope supports teaching labs and QA checks with LED illumination, mechanical stage, and included 5MP camera.
Researchers developed an aspirin-containing hydrogel that mimics the nutrient-rich fluid between cells, accelerating healing of radiation-induced skin injuries in animal models. The new salve could provide rapid wound healing for humans with minimal side effects.
Researchers at City University of Hong Kong announce an advanced sperm selection system that signals a breakthrough in assisted reproduction. The system, called BLASTO-chip, uses microfluidic droplet technology to select live sperm from immotile samples with over 90% accuracy.
Scientists have developed a new way to 3D print materials that are strong enough to support human tissue and vary in shape and size. The breakthrough, known as CLEAR, helps pave the way toward a new generation of biomaterials for personalized implants and tissues.
Aranet4 Home CO2 Monitor
Aranet4 Home CO2 Monitor tracks ventilation quality in labs, classrooms, and conference rooms with long battery life and clear e-ink readouts.
Researchers explore inkjet printing's potential for creating advanced biomaterials with controlled particulate distribution. The review highlights the technology's applications in tissue engineering, drug delivery systems, and bioelectronics.
Researchers have developed a new bioink that can mimic human skin constructs using 3D bioprinting. The bioink, based on thiol-norbornene-pullulan formulations, was effectively used to create epithelized dermal skin constructs with high cellular viability rates.
Scientists embedded gold nanorods in hydrogels that can contract when exposed to light and expand again upon removal. This expansion and contraction mechanism allows for remotely controlled actuators with endless design possibilities.
A UVA research team has developed biomaterials with controlled mechanical properties matching those of various human tissues, representing a significant leap in bioprinting technologies. Their unique digital assembly of spherical particles (DASP) technique can deposit particles of biomaterial in a supporting matrix to build 3D structur...
CalDigit TS4 Thunderbolt 4 Dock
CalDigit TS4 Thunderbolt 4 Dock simplifies serious desks with 18 ports for high-speed storage, monitors, and instruments across Mac and PC setups.
Researchers at ETH Zurich developed a hydrogel implant to treat endometriosis by preventing retrograde menstruation and acting as a barrier to sperm. The implant can be easily destroyed and is compatible with native tissue, offering a promising non-surgical solution for women suffering from the condition.
Scientists have created a new type of battery that is soft and stretchable, making it suitable for wearables and medical implants. The 'jelly batteries' use hydrogels to deliver an electric current and can be stretched up to ten times their original length without losing conductivity.
A newly engineered hydrogel-infused soil system has been developed to capture water from the air and release nutrients, resulting in larger, healthier plants using less water and fertilizer. The technology has shown promising results in experiments, with a 138% increase in stem length compared to regular soil.
Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C)
Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C) keeps Macs, tablets, and meters powered during extended observing runs and remote surveys.
Researchers have developed a multi-component hydrogel scaffold to mimic the amyloid-beta containing microenvironment associated with AD. The study found elevated levels of neuroinflammation and apoptosis markers in healthy neuronal progenitor cells cultured within this environment.
The NTU team created a compact and flexible light-based sensing device, like a plaster, to provide highly accurate biomarker readings within minutes. The device detects glucose, lactate, and urea levels in sweat with ultra-high sensitivity and dynamic range.
Researchers have designed a novel 3D hydrogel culture system that accurately mimics the mammalian lung environment, allowing for the study of tuberculosis bacteria infection and therapeutics. The system successfully tracks infection progression and demonstrates the efficacy of pyrazinamide in clearing out TB bacteria.
A new study published in GEN Biotechnology describes the establishment of a 3D hydrogel-based platform for producing functional T-cells from hematopoietic stem and progenitor cells. The platform was engineered with key thymic components to direct T-cell development, producing cytokine-producing T-cells.
Researchers propose a novel hydrogel electrolyte formula that effectively interrupts water clusters and enhances water covalency, resulting in an expanded voltage stability window. The design improves the battery's climate adaptability by regulating Zn solvation and interfacial adhesion.
Meta Quest 3 512GB
Meta Quest 3 512GB enables immersive mission planning, terrain rehearsal, and interactive STEM demos with high-resolution mixed-reality experiences.
Researchers developed an oral inulin-based hydrogel targeting colorectal tumors, which released oxaliplatin and modulated the microbiota to generate anti-tumor immune responses. The treatment showed improved chemotherapy efficacy and reduced tumor progression.
Researchers have developed a highly versatile 3D bioprinted gut-on-chip model with integrated electrodes, capable of simulating the formation of the intestinal barrier in real-time. This innovative device has potential applications in disease modeling and drug screening.
Researchers developed adhesive hydrogel coatings that eliminate fibrosis, a common issue with medical implants. The coatings bind devices to tissue and prevent the immune system from attacking them.
Researchers discover a microscopic phenomenon that enables hydrogels to swell and contract quickly, improving the flexibility of soft robots. This breakthrough could lead to faster and more agile robots with applications in healthcare, manufacturing, and search and rescue operations.
DJI Air 3 (RC-N2)
DJI Air 3 (RC-N2) captures 4K mapping passes and environmental surveys with dual cameras, long flight time, and omnidirectional obstacle sensing.
A team of scientists at the University of Ottawa has developed a novel peptide-based hydrogel that can be used for on-the-spot repair to damaged organs and tissues. The material shows great potential for closing skin wounds, delivering therapeutics to damaged heart muscle, and reshaping and healing injured corneas.
Researchers at Rice University have developed a novel fabrication process to create aligned peptide nanofiber hydrogels, which can guide cell growth in a desired direction. The study revealed that cells need to be able to 'pull' on the peptide nanofibers to recognize alignment, and excessive rigidity can prevent this.
Researchers at NJIT are developing a hydrogel therapy that prevents viruses like SARS-CoV-2 from attaching to and entering cells. The peptides in the gel form a 'molecular mask' that muffles the virus's action, providing a potential first line of defense against biological threats.
Researchers at IISc developed a novel hydrogel that can remove 95% of polyvinyl chloride and 93% of polypropylene microplastics from water. The hydrogel uses UV light irradiation and has a durable structure, making it suitable for repeated use.
Synthetic platelets made of hydrogel nanoparticles mimic the size and shape of human platelets, promoting clotting and healing. The innovative device has shown promising results in animal models and is being developed for clinical use to treat various medical conditions.
GoPro HERO13 Black
GoPro HERO13 Black records stabilized 5.3K video for instrument deployments, field notes, and outreach, even in harsh weather and underwater conditions.
Researchers created a hydrogel that kills bacteria naturally, promotes cell growth and heals wounds more effectively than traditional gels. The gel is infused with amino acid polylysine and platelet-rich blood plasma to create properties well-suited for wound care.
A team of scientists from Pohang University of Science & Technology developed an artificial vitreous body based on alginate to treat retinal detachment. The hydrogel maintains vision post-surgery and regulates fluid dynamics within the eye, preventing recurrence and air bubble formation.
Researchers at EPFL's EMSI lab discovered a positive correlation between crack complexity and material toughness, revealing that more energy is required to advance complex cracks than simple ones. This finding could improve materials testing and development for safe and cost-effective composite materials.
Researchers at Brigham and Women's Hospital developed a sprayable adhesive hydrogel product to address GI wound management limitations. The material promotes rapid wound healing, provides tissue protection, and minimizes complications under harsh conditions.
Apple iPad Pro 11-inch (M4)
Apple iPad Pro 11-inch (M4) runs demanding GIS, imaging, and annotation workflows on the go for surveys, briefings, and lab notebooks.
A team of international scientists has developed an effective treatment for preventing infection in chronic wounds that does not involve antibiotics. The new method involves the plasma activation of hydrogel dressings, producing a unique mix of chemical oxidants that are effective in decontaminating and aiding healing.
Scientists create a hydrogel system that can remember its shape, allowing them to control cell adhesion behavior. The elastic modulus of the hydrogel is adjusted by compressing it into different thicknesses at high temperatures.
Researchers have developed an injectable hydrogel that mitigates damage to the right ventricle of the heart in children with hypoplastic left heart syndrome. The treatment, made from cardiac extracellular matrix, improves heart function and slows tissue scarring, potentially increasing patient survival time.
Researchers from IOCB Prague and Ghent University have developed 3D-printable gelatin-based materials that can be easily monitored using X-rays or CT scans. This improvement enables the tracking of implant biodegradation and mechanical failures, allowing for tailored clinical requirements.
Rigol DP832 Triple-Output Bench Power Supply
Rigol DP832 Triple-Output Bench Power Supply powers sensors, microcontrollers, and test circuits with programmable rails and stable outputs.
Neural stem cells developed into nerve cells when adhering to hydrogels with high positive charge, while those on lower positively charged gels became glial cells. The ability to influence differentiation could aid in nerve and glial cell regeneration and treatment of diseases like multiple sclerosis.
Researchers create a simple method to instantly bond layers made of the same or different types of hydrogels using a thin film of chitosan. The new approach has potential to broadly advance new biomaterials solutions for multiple unmet clinical needs, including regenerative medicine and surgical care.
A team of scientists has developed a new treatment for chronic wounds that uses ionized gas plasma to decontaminate and heal wounds. The technology shows promise in treating diabetic foot ulcers, internal wounds, and potentially cancerous tumours.
A rapid diagnosis protocol using a luminescent paper-based platform has been developed to detect the presence of antibiotic-resistant bacteria. The approach uses a supramolecular hydrogel matrix containing terbium cholate that emits green fluorescence when UV light is shined on it.
Researchers have created a hydrogel that can be used to heal damaged heart tissue and improve cancer treatments. The gel is made from cellulose nanocrystals derived from wood pulp and has a nanofibrous architecture that replicates the properties of human tissues.
Apple MacBook Pro 14-inch (M4 Pro)
Apple MacBook Pro 14-inch (M4 Pro) powers local ML workloads, large datasets, and multi-display analysis for field and lab teams.