Bluesky Facebook Reddit Email

Life Sciences

Comprehensive exploration of living organisms, biological systems, and life processes across all scales from molecules to ecosystems. Encompasses cutting-edge research in biology, genetics, molecular biology, ecology, biochemistry, microbiology, botany, zoology, evolutionary biology, genomics, and biotechnology. Investigates cellular mechanisms, organism development, genetic inheritance, biodiversity conservation, metabolic processes, protein synthesis, DNA sequencing, CRISPR gene editing, stem cell research, and the fundamental principles governing all forms of life on Earth.

447,757 articles | 2542 topics

Health and Medicine

Comprehensive medical research, clinical studies, and healthcare sciences focused on disease prevention, diagnosis, and treatment. Encompasses clinical medicine, public health, pharmacology, epidemiology, medical specialties, disease mechanisms, therapeutic interventions, healthcare innovation, precision medicine, telemedicine, medical devices, drug development, clinical trials, patient care, mental health, nutrition science, health policy, and the application of medical science to improve human health, wellbeing, and quality of life across diverse populations.

431,843 articles | 751 topics

Social Sciences

Comprehensive investigation of human society, behavior, relationships, and social structures through systematic research and analysis. Encompasses psychology, sociology, anthropology, economics, political science, linguistics, education, demography, communications, and social research methodologies. Examines human cognition, social interactions, cultural phenomena, economic systems, political institutions, language and communication, educational processes, population dynamics, and the complex social, cultural, economic, and political forces shaping human societies, communities, and civilizations throughout history and across the contemporary world.

260,756 articles | 745 topics

Physical Sciences

Fundamental study of the non-living natural world, matter, energy, and physical phenomena governing the universe. Encompasses physics, chemistry, earth sciences, atmospheric sciences, oceanography, materials science, and the investigation of physical laws, chemical reactions, geological processes, climate systems, and planetary dynamics. Explores everything from subatomic particles and quantum mechanics to planetary systems and cosmic phenomena, including energy transformations, molecular interactions, elemental properties, weather patterns, tectonic activity, and the fundamental forces and principles underlying the physical nature of reality.

257,913 articles | 1552 topics

Applied Sciences and Engineering

Practical application of scientific knowledge and engineering principles to solve real-world problems and develop innovative technologies. Encompasses all engineering disciplines, technology development, computer science, artificial intelligence, environmental sciences, agriculture, materials applications, energy systems, and industrial innovation. Bridges theoretical research with tangible solutions for infrastructure, manufacturing, computing, communications, transportation, construction, sustainable development, and emerging technologies that advance human capabilities, improve quality of life, and address societal challenges through scientific innovation and technological progress.

225,386 articles | 998 topics

Scientific Community

Study of the practice, culture, infrastructure, and social dimensions of science itself. Addresses how science is conducted, organized, communicated, and integrated into society. Encompasses research funding mechanisms, scientific publishing systems, peer review processes, academic ethics, science policy, research institutions, scientific collaboration networks, science education, career development, research programs, scientific methods, science communication, and the sociology of scientific discovery. Examines the human, institutional, and cultural aspects of scientific enterprise, knowledge production, and the translation of research into societal benefit.

193,043 articles | 157 topics

Space Sciences

Comprehensive study of the universe beyond Earth, encompassing celestial objects, cosmic phenomena, and space exploration. Includes astronomy, astrophysics, planetary science, cosmology, space physics, astrobiology, and space technology. Investigates stars, galaxies, planets, moons, asteroids, comets, black holes, nebulae, exoplanets, dark matter, dark energy, cosmic microwave background, stellar evolution, planetary formation, space weather, solar system dynamics, the search for extraterrestrial life, and humanity's efforts to explore, understand, and unlock the mysteries of the cosmos through observation, theory, and space missions.

29,662 articles | 175 topics

Research Methods

Comprehensive examination of tools, techniques, methodologies, and approaches used across scientific disciplines to conduct research, collect data, and analyze results. Encompasses experimental procedures, analytical methods, measurement techniques, instrumentation, imaging technologies, spectroscopic methods, laboratory protocols, observational studies, statistical analysis, computational methods, data visualization, quality control, and methodological innovations. Addresses the practical techniques and theoretical frameworks enabling scientists to investigate phenomena, test hypotheses, gather evidence, ensure reproducibility, and generate reliable knowledge through systematic, rigorous investigation across all areas of scientific inquiry.

21,889 articles | 139 topics

Mathematics

Study of abstract structures, patterns, quantities, relationships, and logical reasoning through pure and applied mathematical disciplines. Encompasses algebra, calculus, geometry, topology, number theory, analysis, discrete mathematics, mathematical logic, set theory, probability, statistics, and computational mathematics. Investigates mathematical structures, theorems, proofs, algorithms, functions, equations, and the rigorous logical frameworks underlying quantitative reasoning. Provides the foundational language and tools for all scientific fields, enabling precise description of natural phenomena, modeling of complex systems, and the development of technologies across physics, engineering, computer science, economics, and all quantitative sciences.

3,023 articles | 113 topics

Quantum ‘alchemy’ made feasible with excitons

A team of researchers from OIST and Stanford University has demonstrated a powerful new alternative approach to Floquet engineering by showing that excitons can produce Floquet effects more efficiently than light. This breakthrough enables the creation of novel quantum devices and materials with significantly lower intensities.

Celestron NexStar 8SE Computerized Telescope

Celestron NexStar 8SE Computerized Telescope combines portable Schmidt-Cassegrain optics with GoTo pointing for outreach nights and field campaigns.

Light-powered breakthrough enables precision tuning of quantum dots

Researchers at NC State University have developed a new technique to tune the optical properties of quantum dots using light, reducing energy consumption and environmental impact. This method allows for precise control over the bandgap, enabling the creation of high-quality perovskite quantum dots for optoelectronic devices.

Predicting material properties with limited data

A team of researchers at the Indian Institute of Science (IISc) has developed a machine learning-based approach to predict material properties using limited data. By leveraging transfer learning and multi-property pre-training, they were able to improve model performance and extend its applicability to new materials.

Researchers demonstrate self-assembling electronics

A new technique has been demonstrated for self-assembling electronic devices, enabling faster and less expensive production. The method uses a directed metal-ligand reaction to create semiconductor materials with tunable properties.

Nikon Monarch 5 8x42 Binoculars

Nikon Monarch 5 8x42 Binoculars deliver bright, sharp views for wildlife surveys, eclipse chases, and quick star-field scans at dark sites.

Transportation electrification research wins $1 million DOE grant

The Department of Energy awarded nearly $1 million to researchers at the University of Arkansas to develop a prototype for high-voltage power modules that can handle higher voltages and temperatures. The goal is to create smaller, more efficient, and more reliable fast-charging stations for electric vehicles.

Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C)

Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C) keeps Macs, tablets, and meters powered during extended observing runs and remote surveys.

When does a conductor not conduct?

A new atomically-thin material has been discovered that can switch between an insulating and conducting state by controlling the number of electrons. This property makes it a promising candidate for use in electronic devices such as transistors.

Apple iPhone 17 Pro

Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.

SAMSUNG T9 Portable SSD 2TB

SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.

NC State to lead regional semiconductor innovation hub

The university will use its expertise to create better wide bandgap semiconductors for the US defense, with potential applications in electric vehicles, power grids, and quantum technologies. The hub aims to build 'lab to fab' capability for semiconductors and enhance fundamental research.

Researchers fabricate chip-based optical resonators with record low UV losses

The new resonators exhibit a record low UV light loss, enabling the development of miniaturized devices for applications such as spectroscopic sensing, underwater communication, and quantum information processing. The researchers achieved this by combining optimized design and fabrication techniques with amorphous alumina materials.

Exploring light neutron-rich nuclei: First observation of oxygen-28

Researchers have observed the decay of two neutron-rich isotopes, oxygen-28 and oxygen-27, providing new insights into nuclear structure. The study's findings suggest that these isotopes do not exhibit a closed shell structure, challenging current theories and offering opportunities for further investigation.

Kestrel 3000 Pocket Weather Meter

Kestrel 3000 Pocket Weather Meter measures wind, temperature, and humidity in real time for site assessments, aviation checks, and safety briefings.

Tough memory device aims for space missions

Gallium oxide-based flash memory device demonstrates high performance and stability in extreme temperatures and radiation, retaining data for over 80 minutes. The team aims to improve device properties through further material quality and design advancements.

Sony Alpha a7 IV (Body Only)

Sony Alpha a7 IV (Body Only) delivers reliable low-light performance and rugged build for astrophotography, lab documentation, and field expeditions.

Into the blue: Progress in perovskite LEDs for deep-blue light

Scientists have created a novel approach to produce phase-pure quasi-2D Ruddlesden–Popper perovskites, enabling highly efficient and spectrally stable deep-blue-emissive perovskite LEDs. The rapid crystallization method yields high-performance devices with an emission wavelength centered at 437 nm.

Improving the operational stability of perovskite solar cells

Researchers developed a method to improve power conversion efficiency and stability of pure iodide and mixed-halide perovskites by using two alkylammonium halide modulators. This approach substantially reduces drops in power-conversion efficiency and retains about 80-90% of initial efficiencies after continuous operation.

Rigol DP832 Triple-Output Bench Power Supply

Rigol DP832 Triple-Output Bench Power Supply powers sensors, microcontrollers, and test circuits with programmable rails and stable outputs.

Scientists discover exotic quantum state at room temperature

Physicists have observed novel quantum effects in a topological insulator at room temperature, opening up new possibilities for efficient quantum technologies. This breakthrough uses bismuth-based topological materials to bypass the need for ultra-low temperatures.

Light-induced topological states

Researchers at the University of Tsukuba have created light-induced topological states in zinc arsenide, exhibiting unusual behavior where electrical currents flow along the surface. This work explores the possibility of creating topological semimetals and manifesting new physical properties by light control.

Getting more out of light

Scientists at KAUST have successfully created a semiconductor material with multiple exciton generation, resulting in a photocurrent quantum efficiency of over 100%. This breakthrough could lead to improved solar cells and light-harvesting applications.

Buckyballs on gold are less exotic than graphene

Researchers found that buckyballs on gold do not exhibit unique Dirac cone behavior as previously thought, contrary to previous study suggestions. Instead, the electrons behave in a parabolic relationship between momentum and energy.

AmScope B120C-5M Compound Microscope

AmScope B120C-5M Compound Microscope supports teaching labs and QA checks with LED illumination, mechanical stage, and included 5MP camera.

Terahertz topological on-chip metadevices

Researchers developed topological membrane metadevices for on-chip terahertz wave manipulations, showcasing robust single-mode manipulation and valley-locked edge states. This breakthrough enables the development of a robust platform for terahertz on-chip communication, sensing, and multiplexing systems.

Organic water splitters get a boost

A KAUST-led team developed organic semiconductor-based photocatalysts to store solar energy as clean hydrogen fuel. These catalysts can absorb visible light and generate long-lived charges, improving efficiency for hydrogen evolution.

Novel solar cell architecture performs well under real-world constraints

Researchers developed a hot-carrier multijunction solar cell that maintains high conversion efficiency with nonoptimal materials, expanding the scope of candidate designs. The novel architecture showed superior resilience to design imperfections, widening the range of suitable materials and operating conditions.

Apple iPad Pro 11-inch (M4)

Apple iPad Pro 11-inch (M4) runs demanding GIS, imaging, and annotation workflows on the go for surveys, briefings, and lab notebooks.

Halting a wave in its tracks

By pairing two waveguides, one with an ill-defined topology and another with a well-defined one, researchers created a topological singularity that can halt waves in their tracks. This phenomenon has potential applications in energy harvesting and enhancing nonlinear effects.

Synthesis of two-dimensional holey graphyne

Researchers have successfully synthesized a new type of carbon allotrope called holey graphyne, which has semiconductor properties and can be used in various applications. The material was created using a bottom-up approach and consists of alternately linked benzene rings and C≡C bonds.

The way of water: Making advanced electronics with H₂O

A new method for creating key components of solar cells, X-ray detectors, and LEDs uses water to control the growth of phase-pure perovskite crystals. This approach allows for precise tuning of crystal structures at room temperature.

Illuminating perovskite photophysics

Scientists at KAUST have studied charge carrier behavior in perovskite thin films using laser pulses and terahertz radiation. They found that increased density of charge carriers narrows the energy gap for electrons to be excited by light, and charge carriers become more localized at higher densities.

Creality K1 Max 3D Printer

Creality K1 Max 3D Printer rapidly prototypes brackets, adapters, and fixtures for instruments and classroom demonstrations at large build volume.

A ‘zigzag’ blueprint for topological electronics

Researchers have confirmed a novel quantum topological material for ultra-low energy electronics, reducing energy consumption by a factor of four. The study reveals the potential of zigzag-Xene-nanoribbons to make topological transistors with robust edge states and low threshold voltage.

Fluke 87V Industrial Digital Multimeter

Fluke 87V Industrial Digital Multimeter is a trusted meter for precise measurements during instrument integration, repairs, and field diagnostics.

Mobile excitons as neutral information carriers

Researchers have created and detected dispersing excitons in a metal using angle-resolved photoemission spectroscopy, a breakthrough that could enable efficient data transmission. The discovery of mobile excitons in TaSe3 reveals their mobility and potential to revolutionize electronics.

Increasing efficiency in two-terminal tandem solar cells

Researchers demonstrate a two-terminal tandem solar cell with enhanced efficiency through spectrum splitting, achieving a 5-6% gain in absolute efficiency. The design uses planar and Lambertian spectral splitters to effectively distribute sunlight among the top and bottom cells.

Suppressing the Auger recombination process in quantum dots

The study reveals that manipulating the transition dipole moment of excitons in quantum dots can suppress Auger recombination. By combining with external structures, researchers achieved a new way to control the nonradiative process, potentially leading to improved efficiency of QD-based devices.

CalDigit TS4 Thunderbolt 4 Dock

CalDigit TS4 Thunderbolt 4 Dock simplifies serious desks with 18 ports for high-speed storage, monitors, and instruments across Mac and PC setups.

UTEP receives $917K grant to advance semiconductor technology

The University of Texas at El Paso has received a $917,000 grant from the Air Force Office of Scientific Research to develop advanced materials for national defense, power electronics, and security. UTEP students will perform cutting-edge research on gallium oxide-based semiconductors.

Helping semiconductors find a cooler way to relax

A study from KAUST found that interface and bandgap engineering can significantly slow down the relaxation of 'hot' electrons in semiconductors, increasing their lifetimes. This innovation has potential applications in solar cells, which could improve efficiency by reducing heat loss.

DJI Air 3 (RC-N2)

DJI Air 3 (RC-N2) captures 4K mapping passes and environmental surveys with dual cameras, long flight time, and omnidirectional obstacle sensing.

Machine learning for solar energy is supercomputer kryptonite

Researchers have developed a machine learning program that accurately predicts the band gap of photovoltaics materials in milliseconds, using freely available software. This breakthrough could render supercomputers unnecessary for some applications, as stoichiometry is found to be a crucial factor in predicting band gaps.

Tuning the energy gap: A novel approach for organic semiconductors

Researchers at TU Dresden and TU Munich developed a novel method to engineer the energy gap in organic semiconductors by blending materials with varying molecular shapes. This approach enables continuous tunability of the energy gap, paving the way for efficient optoelectronic devices.

Efficient metal-free near-infrared phosphorescence films

Researchers in China developed new NIR dyes based on the energy gap law, achieving efficient near-infrared phosphorescence without metals. The dyes demonstrated moderate to high performance, with TBPB@PVA films showing the best results.

Sky & Telescope Pocket Sky Atlas, 2nd Edition

Sky & Telescope Pocket Sky Atlas, 2nd Edition is a durable star atlas for planning sessions, identifying targets, and teaching celestial navigation.

Closing in on state-of-the-art semiconductor solar cells

Scientists at KAUST have created a new absorber layer for perovskite solar cells using single crystals with a mixture of organic cations. This improvement increases the absorption range and enhances device performance, reaching an efficiency of 22.8 percent.

Surpassing the lower limit on computing energy consumption

Researchers have found that using topological insulators in transistors could reduce switching energy by half and the overall energy used by each transistor by a factor of four. This breakthrough could lead to substantial reductions in computing energy consumption, as the industry continues to strive for sustainable technologies.

GoPro HERO13 Black

GoPro HERO13 Black records stabilized 5.3K video for instrument deployments, field notes, and outreach, even in harsh weather and underwater conditions.