Bluesky Facebook Reddit Email

Life Sciences

Comprehensive exploration of living organisms, biological systems, and life processes across all scales from molecules to ecosystems. Encompasses cutting-edge research in biology, genetics, molecular biology, ecology, biochemistry, microbiology, botany, zoology, evolutionary biology, genomics, and biotechnology. Investigates cellular mechanisms, organism development, genetic inheritance, biodiversity conservation, metabolic processes, protein synthesis, DNA sequencing, CRISPR gene editing, stem cell research, and the fundamental principles governing all forms of life on Earth.

447,757 articles | 2542 topics

Health and Medicine

Comprehensive medical research, clinical studies, and healthcare sciences focused on disease prevention, diagnosis, and treatment. Encompasses clinical medicine, public health, pharmacology, epidemiology, medical specialties, disease mechanisms, therapeutic interventions, healthcare innovation, precision medicine, telemedicine, medical devices, drug development, clinical trials, patient care, mental health, nutrition science, health policy, and the application of medical science to improve human health, wellbeing, and quality of life across diverse populations.

431,843 articles | 751 topics

Social Sciences

Comprehensive investigation of human society, behavior, relationships, and social structures through systematic research and analysis. Encompasses psychology, sociology, anthropology, economics, political science, linguistics, education, demography, communications, and social research methodologies. Examines human cognition, social interactions, cultural phenomena, economic systems, political institutions, language and communication, educational processes, population dynamics, and the complex social, cultural, economic, and political forces shaping human societies, communities, and civilizations throughout history and across the contemporary world.

260,756 articles | 745 topics

Physical Sciences

Fundamental study of the non-living natural world, matter, energy, and physical phenomena governing the universe. Encompasses physics, chemistry, earth sciences, atmospheric sciences, oceanography, materials science, and the investigation of physical laws, chemical reactions, geological processes, climate systems, and planetary dynamics. Explores everything from subatomic particles and quantum mechanics to planetary systems and cosmic phenomena, including energy transformations, molecular interactions, elemental properties, weather patterns, tectonic activity, and the fundamental forces and principles underlying the physical nature of reality.

257,913 articles | 1552 topics

Applied Sciences and Engineering

Practical application of scientific knowledge and engineering principles to solve real-world problems and develop innovative technologies. Encompasses all engineering disciplines, technology development, computer science, artificial intelligence, environmental sciences, agriculture, materials applications, energy systems, and industrial innovation. Bridges theoretical research with tangible solutions for infrastructure, manufacturing, computing, communications, transportation, construction, sustainable development, and emerging technologies that advance human capabilities, improve quality of life, and address societal challenges through scientific innovation and technological progress.

225,386 articles | 998 topics

Scientific Community

Study of the practice, culture, infrastructure, and social dimensions of science itself. Addresses how science is conducted, organized, communicated, and integrated into society. Encompasses research funding mechanisms, scientific publishing systems, peer review processes, academic ethics, science policy, research institutions, scientific collaboration networks, science education, career development, research programs, scientific methods, science communication, and the sociology of scientific discovery. Examines the human, institutional, and cultural aspects of scientific enterprise, knowledge production, and the translation of research into societal benefit.

193,043 articles | 157 topics

Space Sciences

Comprehensive study of the universe beyond Earth, encompassing celestial objects, cosmic phenomena, and space exploration. Includes astronomy, astrophysics, planetary science, cosmology, space physics, astrobiology, and space technology. Investigates stars, galaxies, planets, moons, asteroids, comets, black holes, nebulae, exoplanets, dark matter, dark energy, cosmic microwave background, stellar evolution, planetary formation, space weather, solar system dynamics, the search for extraterrestrial life, and humanity's efforts to explore, understand, and unlock the mysteries of the cosmos through observation, theory, and space missions.

29,662 articles | 175 topics

Research Methods

Comprehensive examination of tools, techniques, methodologies, and approaches used across scientific disciplines to conduct research, collect data, and analyze results. Encompasses experimental procedures, analytical methods, measurement techniques, instrumentation, imaging technologies, spectroscopic methods, laboratory protocols, observational studies, statistical analysis, computational methods, data visualization, quality control, and methodological innovations. Addresses the practical techniques and theoretical frameworks enabling scientists to investigate phenomena, test hypotheses, gather evidence, ensure reproducibility, and generate reliable knowledge through systematic, rigorous investigation across all areas of scientific inquiry.

21,889 articles | 139 topics

Mathematics

Study of abstract structures, patterns, quantities, relationships, and logical reasoning through pure and applied mathematical disciplines. Encompasses algebra, calculus, geometry, topology, number theory, analysis, discrete mathematics, mathematical logic, set theory, probability, statistics, and computational mathematics. Investigates mathematical structures, theorems, proofs, algorithms, functions, equations, and the rigorous logical frameworks underlying quantitative reasoning. Provides the foundational language and tools for all scientific fields, enabling precise description of natural phenomena, modeling of complex systems, and the development of technologies across physics, engineering, computer science, economics, and all quantitative sciences.

3,023 articles | 113 topics

High-speed super-resolution microscopy via temporal compression

Researchers developed temporal compressive super-resolution microscopy (TCSRM) to overcome optical diffraction's spatial resolution restriction. TCSRM achieves high-speed imaging at 1200 frames per second with a spatial resolution of 100 nanometers, enabling observation of fast dynamics in fine structures.

Toward practical quantum optics: multiphoton qubits from LNOI

Researchers from Nanjing University have proposed the first scheme to practically generate N-photon states deterministically using a lithium-niobate-on-insulator platform. The scheme involves deterministic parametric down-conversion and demonstrates feasibility for generating multiphoton qubit states.

SAMSUNG T9 Portable SSD 2TB

SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.

Apple iPad Pro 11-inch (M4)

Apple iPad Pro 11-inch (M4) runs demanding GIS, imaging, and annotation workflows on the go for surveys, briefings, and lab notebooks.

Meta-Optics: the disruptive technology you didn’t see coming

Meta-Optics is transforming science and technology, enabling novel applications in the Internet of Things, autonomous cars, wearable devices, and augmented reality. However, challenges remain to be solved, such as scaling up industrial processes and creating tunable metamaterials.

A message that resonates

Researchers at the University of Tsukuba have developed an optoelectronic resonator that enhances the sensitivity of an electron pulse detector, allowing for ultrafast electronic characterization of proteins or materials. This breakthrough may aid in the study of biomolecules and industrial materials.

New monochromator optics for tender X-rays

The new monochromator optics increase photon flux in the tender X-ray range by a factor of 100, allowing highly sensitive spectromicroscopic measurements with high resolutions. This enables data collection on nanoscale materials, such as catalytically active nanoparticles and modern microchip structures, for the first time.

Apple MacBook Pro 14-inch (M4 Pro)

Apple MacBook Pro 14-inch (M4 Pro) powers local ML workloads, large datasets, and multi-display analysis for field and lab teams.

Quantum dots form ordered material

Researchers have successfully created a highly conductive metamaterial using self-organized quantum dots, maintaining their optical properties while displaying the highest electron mobility reported for quantum dot assemblies. This breakthrough paves the way for new generation of opto-electronic applications.

Apple iPhone 17 Pro

Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.

Advances in selective laser sintering of polymers

Researchers at Fudan University reviewed fundamental mechanisms and recent developments in selective laser sintering of polymers. The study highlights the need for innovative materials, sintering methods, and post-processing techniques to improve the efficiency and performance of SLS polymer parts.

A faster experiment to find and study topological materials

Researchers at MIT have developed a new approach to identify topological materials using machine learning and X-ray absorption spectroscopy. The method is over 90% accurate in identifying known topological materials and can predict properties of unknown compounds.

Building with nanoparticles, from the bottom up

MIT researchers have developed a new approach to assemble nanoscale devices from the bottom up, using precise forces to arrange particles and transfer them to surfaces. This technique enables the formation of high-resolution, nanoscale features integrated with nanoparticles, boosting device performance.

The creating process of the world's largest SiC aspherical mirror

Researchers have developed a method to manufacture large SiC mirrors with high accuracy, enabling the creation of the world's largest aspherical mirror. The team successfully polished a 4.03m diameter SiC mirror using a home-built MRF24 polishing machine and proposed a PVD cladding process to improve substrate surface quality.

Rigol DP832 Triple-Output Bench Power Supply

Rigol DP832 Triple-Output Bench Power Supply powers sensors, microcontrollers, and test circuits with programmable rails and stable outputs.

Metalens offers superior off-axis focus

A team at KAUST has created an ultrathin dielectric metalens that improves focusing capabilities and can be scaled down for integration with photonics equipment. The metalens, designed from a custom array of TiO2 nanopillars atop a DBR, offers negligible intrinsic loss and easy fabrication.

Fundamental research improves understanding of new optical materials

Scientists develop a colloidal synthesis method for alkaline earth chalcogenides, allowing control over nanocrystal size and surface chemistry. This enables the creation of more sustainable and environmentally friendly materials with potential applications in solar panels, LEDs, and bioimaging.

Optical rule was made to be broken

Engineers at Rice University have discovered a way to manipulate light at the nanoscale that surpasses the traditional Moss rule for optical materials. The researchers found that iron pyrite has a high refractive index, making it suitable for applications such as virtual reality and 3D displays.

Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C)

Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C) keeps Macs, tablets, and meters powered during extended observing runs and remote surveys.

Rare-earth based materials: An effective toolbox for brain technology

Rare-earth based materials are used for high-resolution brain imaging and efficient diagnosis of brain diseases through magnetic resonance imaging, computed tomography imaging, and fluorescence imaging technologies. Additionally, they can be used for targeted therapy, overcoming the blood-brain barrier.

A perfect trap for light

Researchers from TU Wien and Hebrew University develop 'light trap' that allows complete absorption of light in thin layers using mirrors and lenses. The system works by steering the light beam into a circle and then superimposing it on itself, blocking any escape.

Meta Quest 3 512GB

Meta Quest 3 512GB enables immersive mission planning, terrain rehearsal, and interactive STEM demos with high-resolution mixed-reality experiences.

A perfect trap for light

A team of researchers from TU Wien and The Hebrew University of Jerusalem has developed a 'light trap' that absorbs light perfectly in thin layers. This method uses mirrors and lenses to steer the light beam into a circle and then superimpose it on itself, preventing the light from escaping.

A reflection on the real world

KAUST researchers created a more efficient solar-cell module by redesigning its optical design, reducing power conversion efficiency loss in real-world applications. The new module achieved an efficiency increase from 25.7% to 26.2% due to refractive-index engineering.

GoPro HERO13 Black

GoPro HERO13 Black records stabilized 5.3K video for instrument deployments, field notes, and outreach, even in harsh weather and underwater conditions.

Overcoming a major manufacturing constraint

Researchers characterize material properties of IP-Q using Raman spectroscopy and nanoindentation, revealing elastic parameters and their effects on acoustic behavior. The study optimizes elastic parameters for TPP-fabricated structures, benefiting applications in life science, mobility, and industry.

Getting more out of light

Scientists at KAUST have successfully created a semiconductor material with multiple exciton generation, resulting in a photocurrent quantum efficiency of over 100%. This breakthrough could lead to improved solar cells and light-harvesting applications.

Aranet4 Home CO2 Monitor

Aranet4 Home CO2 Monitor tracks ventilation quality in labs, classrooms, and conference rooms with long battery life and clear e-ink readouts.

Nanostructured surfaces for future quantum computer chips

Scientists have created a new technology that can manipulate light in non-reciprocal ways, allowing for more advanced applications in quantum computing. The innovation uses nanostructured surfaces to convert infrared light into visible light, enabling the creation of specific photon conditions.

New, highly tunable composite materials—with a twist

Researchers at the University of Utah designed composite materials using moiré patterns, resulting in abrupt transitions between electrical conductor and insulator properties. The study's findings have broad potential technological applications and demonstrate a new geometry-driven localization transition.

Halting a wave in its tracks

By pairing two waveguides, one with an ill-defined topology and another with a well-defined one, researchers created a topological singularity that can halt waves in their tracks. This phenomenon has potential applications in energy harvesting and enhancing nonlinear effects.

Garmin GPSMAP 67i with inReach

Garmin GPSMAP 67i with inReach provides rugged GNSS navigation, satellite messaging, and SOS for backcountry geology and climate field teams.

Teaching physics to AI makes the student a master

Researchers at Duke University have developed a machine learning algorithm that incorporates known physics into neural networks, allowing for new insights into material properties and more efficient predictions. The approach helps the algorithm attain transparency and accuracy, even with limited training data.

Shaping the future of light through reconfigurable metasurfaces

Researchers at Georgia Tech have developed the first-ever electrically tunable photonic metasurface platform, which enables reconfigurable metasurfaces with high levels of optical modulation. This breakthrough has significant implications for various technologies such as LiDAR systems, imaging, spectroscopy and sensing.

CalDigit TS4 Thunderbolt 4 Dock

CalDigit TS4 Thunderbolt 4 Dock simplifies serious desks with 18 ports for high-speed storage, monitors, and instruments across Mac and PC setups.

In Einstein’s footsteps and beyond

Researchers discovered near-zero index materials where light's momentum becomes zero, altering fundamental processes like atomic recoil and Heisenberg's uncertainty principle. These materials could enable perfect cloaking and have potential applications in quantum computing and optics.

First integrated laser on lithium niobate chip

Harvard researchers have successfully integrated a high-power laser onto a lithium niobate chip, a major breakthrough in the development of high-performance chip-scale optical systems. The integration enables the creation of fully integrated spectrometers, optical remote sensing, and efficient frequency conversion for quantum networks.

DJI Air 3 (RC-N2)

DJI Air 3 (RC-N2) captures 4K mapping passes and environmental surveys with dual cameras, long flight time, and omnidirectional obstacle sensing.

Shedding new light on controlling material properties

Researchers at Kyoto University have discovered a scaling law that determines high-order harmonic generation in the perovskite material Ca2RuO4. The phenomenon, which was first observed in atomic gas systems, has been found to be highly dependent on temperature and gap energy.

Engineers pave way for next-gen deep ultraviolet lasers

Researchers at Cornell University have developed a high-quality crystal of aluminum nitride and created an optical cavity to trap emitted light, enabling the production of a deep-ultraviolet laser with exceptional precision. The breakthrough has significant implications for various applications, including sterilization, sensing, and ph...

Quantum physics sets a speed limit to electronics

Researchers investigated the shortest possible time scale of optoelectronic phenomena and found that it cannot be increased beyond one petahertz. The experiments used ultra-short laser pulses to create free charge carriers in materials, which were then moved by a second pulse to generate an electric current.

Don’t underestimate undulating graphene

Researchers at Rice University have developed a new type of electronics using undulating graphene, which creates mini channels that produce detectable magnetic fields. This technology has the potential to facilitate nanoscale optical devices and valleytronics applications, such as converging lenses and collimators.

Turning any camera into a polarization camera

Researchers developed a metasurface attachment that can turn any camera into a polarization camera, capturing light's polarization at every pixel. This innovation benefits various fields like face recognition, self-driving cars and remote sensing, revealing hidden details and features.

Apple Watch Series 11 (GPS, 46mm)

Apple Watch Series 11 (GPS, 46mm) tracks health metrics and safety alerts during long observing sessions, fieldwork, and remote expeditions.

‘Self-driving’ lab speeds up research, synthesis of energy materials

Researchers at NC State University have developed a 'self-driving lab' that uses artificial intelligence and fluidic systems to advance our understanding of metal halide perovskite nanocrystals. The technology can autonomously dope MHP nanocrystals, adding manganese atoms on demand, allowing for faster control over properties.

More sensitive X-ray imaging

Researchers at MIT have improved the efficiency of scintillators by up to tenfold and potentially even a hundredfold by creating nanoscale configurations. This could lead to better medical diagnostic X-rays, reduced dose exposure, and improved image quality.

Celestron NexStar 8SE Computerized Telescope

Celestron NexStar 8SE Computerized Telescope combines portable Schmidt-Cassegrain optics with GoTo pointing for outreach nights and field campaigns.

Nanoantennas for light controlled electrically

Scientists at Linköping University have created optical nanoantennas using conducting polymers that can switch between metallic and dielectric properties. The researchers achieved electrical control of the nanoantennas, enabling gradual tuning by applying external bias potentials.

Strong magnets put new twist on phonons

Rice University scientists discovered that strong magnetic fields can manipulate the material's optical phonon mode, a phenomenon previously unseen. The effects were much stronger than expected by theory, revealing a new way of controlling phonons.

SUTD sets its sights on chalcogenide nanostructured displays

Researchers from SUTD and A*STAR IMRE demonstrate the use of chalcogenide nanostructures to reversibly tune Mie resonances in the visible spectrum, paving the way for high resolution colour displays. The technology relies on phase change materials, including antimony trisulphide nanoparticles.

Sony Alpha a7 IV (Body Only)

Sony Alpha a7 IV (Body Only) delivers reliable low-light performance and rugged build for astrophotography, lab documentation, and field expeditions.