Bluesky Facebook Reddit Email

Life Sciences

Comprehensive exploration of living organisms, biological systems, and life processes across all scales from molecules to ecosystems. Encompasses cutting-edge research in biology, genetics, molecular biology, ecology, biochemistry, microbiology, botany, zoology, evolutionary biology, genomics, and biotechnology. Investigates cellular mechanisms, organism development, genetic inheritance, biodiversity conservation, metabolic processes, protein synthesis, DNA sequencing, CRISPR gene editing, stem cell research, and the fundamental principles governing all forms of life on Earth.

447,757 articles | 2542 topics

Health and Medicine

Comprehensive medical research, clinical studies, and healthcare sciences focused on disease prevention, diagnosis, and treatment. Encompasses clinical medicine, public health, pharmacology, epidemiology, medical specialties, disease mechanisms, therapeutic interventions, healthcare innovation, precision medicine, telemedicine, medical devices, drug development, clinical trials, patient care, mental health, nutrition science, health policy, and the application of medical science to improve human health, wellbeing, and quality of life across diverse populations.

431,843 articles | 751 topics

Social Sciences

Comprehensive investigation of human society, behavior, relationships, and social structures through systematic research and analysis. Encompasses psychology, sociology, anthropology, economics, political science, linguistics, education, demography, communications, and social research methodologies. Examines human cognition, social interactions, cultural phenomena, economic systems, political institutions, language and communication, educational processes, population dynamics, and the complex social, cultural, economic, and political forces shaping human societies, communities, and civilizations throughout history and across the contemporary world.

260,756 articles | 745 topics

Physical Sciences

Fundamental study of the non-living natural world, matter, energy, and physical phenomena governing the universe. Encompasses physics, chemistry, earth sciences, atmospheric sciences, oceanography, materials science, and the investigation of physical laws, chemical reactions, geological processes, climate systems, and planetary dynamics. Explores everything from subatomic particles and quantum mechanics to planetary systems and cosmic phenomena, including energy transformations, molecular interactions, elemental properties, weather patterns, tectonic activity, and the fundamental forces and principles underlying the physical nature of reality.

257,913 articles | 1552 topics

Applied Sciences and Engineering

Practical application of scientific knowledge and engineering principles to solve real-world problems and develop innovative technologies. Encompasses all engineering disciplines, technology development, computer science, artificial intelligence, environmental sciences, agriculture, materials applications, energy systems, and industrial innovation. Bridges theoretical research with tangible solutions for infrastructure, manufacturing, computing, communications, transportation, construction, sustainable development, and emerging technologies that advance human capabilities, improve quality of life, and address societal challenges through scientific innovation and technological progress.

225,386 articles | 998 topics

Scientific Community

Study of the practice, culture, infrastructure, and social dimensions of science itself. Addresses how science is conducted, organized, communicated, and integrated into society. Encompasses research funding mechanisms, scientific publishing systems, peer review processes, academic ethics, science policy, research institutions, scientific collaboration networks, science education, career development, research programs, scientific methods, science communication, and the sociology of scientific discovery. Examines the human, institutional, and cultural aspects of scientific enterprise, knowledge production, and the translation of research into societal benefit.

193,043 articles | 157 topics

Space Sciences

Comprehensive study of the universe beyond Earth, encompassing celestial objects, cosmic phenomena, and space exploration. Includes astronomy, astrophysics, planetary science, cosmology, space physics, astrobiology, and space technology. Investigates stars, galaxies, planets, moons, asteroids, comets, black holes, nebulae, exoplanets, dark matter, dark energy, cosmic microwave background, stellar evolution, planetary formation, space weather, solar system dynamics, the search for extraterrestrial life, and humanity's efforts to explore, understand, and unlock the mysteries of the cosmos through observation, theory, and space missions.

29,662 articles | 175 topics

Research Methods

Comprehensive examination of tools, techniques, methodologies, and approaches used across scientific disciplines to conduct research, collect data, and analyze results. Encompasses experimental procedures, analytical methods, measurement techniques, instrumentation, imaging technologies, spectroscopic methods, laboratory protocols, observational studies, statistical analysis, computational methods, data visualization, quality control, and methodological innovations. Addresses the practical techniques and theoretical frameworks enabling scientists to investigate phenomena, test hypotheses, gather evidence, ensure reproducibility, and generate reliable knowledge through systematic, rigorous investigation across all areas of scientific inquiry.

21,889 articles | 139 topics

Mathematics

Study of abstract structures, patterns, quantities, relationships, and logical reasoning through pure and applied mathematical disciplines. Encompasses algebra, calculus, geometry, topology, number theory, analysis, discrete mathematics, mathematical logic, set theory, probability, statistics, and computational mathematics. Investigates mathematical structures, theorems, proofs, algorithms, functions, equations, and the rigorous logical frameworks underlying quantitative reasoning. Provides the foundational language and tools for all scientific fields, enabling precise description of natural phenomena, modeling of complex systems, and the development of technologies across physics, engineering, computer science, economics, and all quantitative sciences.

3,023 articles | 113 topics

Magnetic excitations can be held together by repulsive interactions

Physicists at the University of Cologne have discovered that magnetic elementary excitations in BaCo2V2O8 crystals are bound by both attractive and repulsive interactions. The study found that repulsively bound states, which were unexpected due to their lower stability, can exist in these materials.

Apple Watch Series 11 (GPS, 46mm)

Apple Watch Series 11 (GPS, 46mm) tracks health metrics and safety alerts during long observing sessions, fieldwork, and remote expeditions.

The coldest lab in New York has a new quantum offering

Researchers at Columbia University have successfully created a unique quantum state of matter called a Bose-Einstein Condensate (BEC) out of molecules. The breakthrough, achieved by cooling sodium-cesium molecules to just five nanoKelvin, has the potential to advance powerful quantum simulations and unlock new areas of research.

A simple internet with significant possibilities

Researchers at Harvard University have successfully demonstrated the first metro-area quantum computer network in Boston, using existing telecommunication fiber to send hacker-proof information via photons. The breakthrough overcomes signal loss issues, enabling the creation of a secure quantum internet.

SAMSUNG T9 Portable SSD 2TB

SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.

Developed compiler acceleration technology for quantum computers

Researchers developed a probabilistic approach to generate optimal sequences for execution on quantum computers, reducing search time by several orders of magnitude. The new method enables efficient searches within classical computational resources, contributing to the realization of the quantum Internet and improved performance.

New super-pure silicon chip opens path to powerful quantum computers

Researchers at the University of Melbourne and Manchester have invented a breakthrough technique for manufacturing highly purified silicon, making it ideal for creating powerful quantum computers. The new technique uses qubits of phosphorous atoms implanted into crystals of pure stable silicon, extending the duration of notoriously fra...

Apple iPhone 17 Pro

Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.

Atomic nucleus excited with laser: a breakthrough after decades

Physicists have achieved a breakthrough by exciting thorium atomic nuclei with lasers for the first time, enabling precise tracking of their return to original energy states. This discovery has far-reaching implications for precision measurement techniques, including nuclear clocks and fundamental questions in physics.

Manchester scientists found novel one-dimensional superconductor

Researchers at The University of Manchester have successfully achieved robust superconductivity in high magnetic fields using a newly created one-dimensional system. This breakthrough holds profound potential for advancements in quantum technologies, particularly in the quantum Hall regime.

Davis Instruments Vantage Pro2 Weather Station

Davis Instruments Vantage Pro2 Weather Station offers research-grade local weather data for networked stations, campuses, and community observatories.

Discovery points path to flash-like memory for storing qubits

Researchers found a way to use heat to toggle a crystal between two electronic phases, storing qubits in topologically protected states that could reduce decoherence-related errors. The discovery may lead to the creation of flash-like memory capable of storing quantum bits of information.

Researchers discover dual topological phases in an intrinsic monolayer crystal

A team of scientists has discovered dual topological phases in an intrinsic monolayer crystal, revealing new rule-bending properties in a quantum material. The discovery introduces a novel effect, known as the dual topological insulator or quantum spin Hall insulator, which exhibits zero electrical conductivity within its interior.

A new type of cooling for quantum simulators

A new technique has been developed to cool quantum simulators, allowing for more stable experiments and better insights into quantum effects. By splitting a Bose-Einstein condensate in a specific way, researchers can reduce temperature fluctuations and enhance the performance of quantum simulators.

Charge fractionalisation observed spectroscopically

Researchers discovered charge fractionalisation in an iron-based metallic ferromagnet using laser ARPES spectroscopy, revealing collective excitations and quasiparticles. The study challenges fundamental quantum mechanics by showing electrons can behave as independent entities with fractionally charged pockets.

AmScope B120C-5M Compound Microscope

AmScope B120C-5M Compound Microscope supports teaching labs and QA checks with LED illumination, mechanical stage, and included 5MP camera.

Creality K1 Max 3D Printer

Creality K1 Max 3D Printer rapidly prototypes brackets, adapters, and fixtures for instruments and classroom demonstrations at large build volume.

What coffee with cream can teach us about quantum physics

Physicists at the University of Colorado Boulder have discovered a way to create scenarios where information can remain stable in quantum computer chips, potentially leading to advances in quantum computing. The team's findings could also influence other fields, such as materials science and engineering.

Rice research opens new arena to study quantum interactions

Researchers at Rice University have developed a new experimental technique that preserves quantum coherence in ultracold molecules for a significantly longer time. By using a specific wavelength of light, the 'magic trap' delays the onset of decoherence, allowing scientists to study fundamental questions about interacting quantum matter.

Towards the quantum of sound

Scientists from the Stiller Research Group have successfully cooled the temperature of a sound wave in an optical fiber to 74K (-194C), reducing phonon number by 75%. This achievement brings researchers closer to bridging the gap between classical and quantum mechanics.

Solid-state qubits: Forget about being clean, embrace mess

Researchers at Paul Scherrer Institute created solid-state qubits from rare-earth ions in a crystal, showing that long coherences can exist in cluttered environments. The approach uses strongly interacting pairs of ions to form qubits, which are shielded from the environment and protected from decoherence.

Apple AirPods Pro (2nd Generation, USB-C)

Apple AirPods Pro (2nd Generation, USB-C) provide clear calls and strong noise reduction for interviews, conferences, and noisy field environments.

New strategy reveals ‘full chemical complexity’ of quantum decoherence

Researchers have developed a method to quantify the spectral density of molecules in solvent, allowing for the design of molecules with specific quantum coherence properties. This breakthrough enables the mapping of decoherence pathways in molecules, connecting chemical structure to quantum decoherence.

Limits for quantum computers: Perfect clocks are impossible

The research team created a mathematical model showing that no clock can have both infinite energy and perfect time resolution, setting limits to quantum computer capabilities. This realization impacts the speed and reliability of quantum computers, as current accuracy is limited by other factors.

Kestrel 3000 Pocket Weather Meter

Kestrel 3000 Pocket Weather Meter measures wind, temperature, and humidity in real time for site assessments, aviation checks, and safety briefings.

Using sound to test devices, control qubits

Researchers at Harvard John A. Paulson School of Engineering and Applied Sciences have developed a system that uses atomic vacancies in silicon carbide to measure the stability and quality of acoustic resonators, which could improve communications and offer new control for quantum computing. The technique also allows for acoustically-c...

A new qubit platform is created atom by atom

Researchers at IBS Center for Quantum Nanoscience created a novel electron-spin qubit platform assembled atom-by-atom on a surface, demonstrating ability to control multiple qubits. This breakthrough enables application of single-, two-, and three-qubit gates.

Aranet4 Home CO2 Monitor

Aranet4 Home CO2 Monitor tracks ventilation quality in labs, classrooms, and conference rooms with long battery life and clear e-ink readouts.

Promising quantum state found during error correction research

A team of Cornell researchers has found a promising quantum state called a 'quantum spin-glass' while studying random algorithms for error correction in quantum computing. This discovery could lead to new strategies for protecting qubits from environmental noise and errors.

Do measurements produce the reality they show us?

Researchers from Hiroshima University found that measurements shape observable reality, suggesting a context-dependent understanding of quantum superpositions. This approach resolves the paradox of conflicting results in quantum experiments and provides evidence against reducing reality to material building blocks.

Garmin GPSMAP 67i with inReach

Garmin GPSMAP 67i with inReach provides rugged GNSS navigation, satellite messaging, and SOS for backcountry geology and climate field teams.

Visualizing the microscopic phases of magic-angle twisted bilayer graphene

A Princeton University-led team has captured the precise microscopic behavior of interacting electrons that give rise to insulating quantum phase in magic-angle twisted bilayer graphene. The study uses scanning tunneling microscopy and achieves pristine samples, allowing for high-resolution images of materials.

When D turns to F, quantum matter is A-plus

Researchers have found that certain materials can exhibit D-wave effects, entangled with other quantum states, allowing for efficient coupling at higher temperatures. This breakthrough bridges condensed matter physics subfields and could enable practical applications of quantum computing.

Researchers put a new twist on graphite

A team of researchers at the University of Washington has discovered a way to imbue bulk graphite with physical properties similar to those of graphene, a single-layer sheet. This breakthrough could unlock new approaches for studying unusual and exotic states of matter and bring them into everyday life.

Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C)

Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C) keeps Macs, tablets, and meters powered during extended observing runs and remote surveys.

Researchers succeed in arranging nanoscale quantum sensors on desired targets

Scientists at the University of Tokyo develop a technique to create nano-sized quantum sensors on measurement targets, enabling high-resolution magnetic field imaging with applications in superconductors and electronic devices. The breakthrough uses boron vacancies or lattice defects in hexagonal boron nitride film, allowing for easy d...

GoPro HERO13 Black

GoPro HERO13 Black records stabilized 5.3K video for instrument deployments, field notes, and outreach, even in harsh weather and underwater conditions.

New scheme for qubit control in multilevel system

Researchers have developed a new scheme for controlling qubits in multilevel systems, enabling high-fidelity gate operations and overcoming interference issues. The approach uses a shuttle state to achieve equivalent coupling between any two energy levels, allowing for efficient control of quantum states.

Scientists have full state of a quantum liquid down cold

Researchers reconstructed the full state of a quantum liquid using ultracold atoms, offering insights into quantum systems' fluctuations and behavior. This breakthrough has promise for quantum computing, sensing technology, and better characterization of quantum systems.

Meta Quest 3 512GB

Meta Quest 3 512GB enables immersive mission planning, terrain rehearsal, and interactive STEM demos with high-resolution mixed-reality experiences.

Ultra-miniaturized non-classical light sources for quantum devices

The researchers developed a method to create ultracompact photonic crystal cavities that can generate entangled photons. The discovery is crucial for the development of quantum computing and sensing applications. By controlling the cavity's properties, they can efficiently convert pump power into coherent light.

Two qudits fully entangled

The team successfully entangled two qudits with unprecedented performance, enabling faster and more robust quantum computing. This breakthrough could lead to significant advancements in fields like chemistry and physics.

Apple MacBook Pro 14-inch (M4 Pro)

Apple MacBook Pro 14-inch (M4 Pro) powers local ML workloads, large datasets, and multi-display analysis for field and lab teams.

The quantum spin liquid that isn't one

A team of researchers at Vienna University of Technology and Toho University in Japan investigated the electrical resistance of κ-(BEDT-TTF)2Cu2(CN)3 as a function of temperature and pressure. They found that the material exhibits properties similar to those of helium-3, contradicting the theory of a quantum spin liquid.

Physicists find unusual waves in nickel-based magnet

Researchers found that two outermost electrons from each nickel ion behaved differently, cancelling each other out in a phenomenon called a spin singlet. This led to the discovery of two families of propagating waves at dramatically different energies, contradicting expectations of local excitations.

Nikon Monarch 5 8x42 Binoculars

Nikon Monarch 5 8x42 Binoculars deliver bright, sharp views for wildlife surveys, eclipse chases, and quick star-field scans at dark sites.

All-optical quantum state sharing via continuous variable system

Researchers developed an all-optical quantum state sharing protocol that uses continuous variable systems to share secret information between multiple parties. The new method successfully implemented in a low-noise amplifier and demonstrated higher average fidelity than classical limits.

Absolute zero in the quantum computer

Researchers at TU Wien develop a quantum version of the third law of thermodynamics, finding that absolute zero is theoretically attainable but requires infinite energy, time, or complexity. This breakthrough reconciles quantum physics with thermodynamics, paving the way for the development of practical quantum computers.

Apple iPad Pro 11-inch (M4)

Apple iPad Pro 11-inch (M4) runs demanding GIS, imaging, and annotation workflows on the go for surveys, briefings, and lab notebooks.

Entangled pairs get sensitive very fast

Researchers develop new way to generate squeezing that overcomes fundamental quantum imprecision, enabling more precise atomic clocks and improved quantum sensors. The new approach leverages bosonic pair creation and enables entangled states with minimal fuss, reducing experimental challenges.

Breakthrough in tin-vacancy centers for quantum network applications

Researchers at Tokyo Institute of Technology have successfully created Sn-V centers with identical photon frequency and linewidth, marking a new phase in their use as quantum nodes. The breakthrough enables the formation of stable Sn-V centers suitable for creating remote entangled quantum states.