A new mathematical theory developed by scientists at Rice University and Oxford University can predict the nature of motions in complex quantum systems. The theory applies to any sufficiently complex quantum system and may give insights into building better quantum computers, designing solar cells, or improving battery performance.
Researchers from Nanjing University have proposed the first scheme to practically generate N-photon states deterministically using a lithium-niobate-on-insulator platform. The scheme involves deterministic parametric down-conversion and demonstrates feasibility for generating multiphoton qubit states.
Researchers from University of the Witwatersrand developed a new approach to studying complex light in complex systems. They found distortion-free forms of structured light that emerge undistorted from noisy channels, unlike other forms of structured light which become unrecognizable. This breakthrough has the potential to pave the wa...
Scientists develop eigenmodes of structured light that remain undistorted even in turbulent channels, enabling robust transmission through noisy media. This breakthrough paves the way for future work in quantum light communication and imaging through complex systems.
Apple iPhone 17 Pro
Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.
Researchers have devised a new mechanism to generate high-energy 'quantum light', which could reveal new properties of matter at the atomic scale. The theory predicts a way to control the quantum nature of light using correlated emitters with a strong laser.
Princeton researchers have achieved a major breakthrough by microscopically studying molecular gases at a level never before achieved. The team cooled molecules to ultracold temperatures, observed individual molecules with high spatial resolution, and detected subtle quantum correlations, opening up new avenues for many-body physics re...
The team isolated pairs of atoms within a 3D optical lattice to measure the strength of their mutual interaction. They confirmed a longstanding prediction that the p-wave force between particles reached its maximum theoretical limit.
KAUST researchers have designed and built novel organic scintillator materials for detecting X-rays at low doses, overcoming stability issues with existing ceramic or perovskite materials. The new approach uses heavy atoms to improve X-ray absorption capability and exciton utilization efficiency.
Scientists successfully created a light source that produced two entangled light beams using rubidium atoms. The entanglement was achieved by adding new detection steps to measure the quantum correlations in the amplitudes and phases of the fields generated, enabling applications in quantum computing, encryption, and metrology.
SAMSUNG T9 Portable SSD 2TB
SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.
A new method bridges the quantum and classical worlds, enabling interaction-free detection of microwave pulses with a superconducting circuit. This breakthrough demonstrates genuine quantum advantage using a simpler setup, with potential applications in quantum computing, optical imaging, and cryptographic key distribution.
Researchers at the University of Ottawa have developed a new technique to differentiate the mirror images of a chiral molecule, a problem that was believed to be unsolvable for nearly 20 years. The team used linear polarized helical light beams to enhance sensitivity and observed differential absorption in achiral molecules.
Researchers from Okinawa Institute of Science and Technology (OIST) have developed a machine learning-based method to discover non-intuitive pulse sequences that can cool mechanical objects to ultracold temperatures faster than traditional methods. This breakthrough showcases the utility of artificial intelligence in quantum technologies.
Researchers at the University of Science and Technology of China have developed a method to store high-dimensional orbital angular momentum quantum states for an extended period. The team used a guiding magnetic field combined with clock state preparation to achieve a storage time of up to 400μs, surpassing previous records.
Sony Alpha a7 IV (Body Only)
Sony Alpha a7 IV (Body Only) delivers reliable low-light performance and rugged build for astrophotography, lab documentation, and field expeditions.
ICFO researchers successfully demonstrate transport of two-photon quantum states through a phase-separated Anderson localization optical fiber, showing maintained spatial anti-correlation. The phase-separated fiber enables efficient transmission of quantum information via Corning's optical fiber.
Physicists at the University of Basel have experimentally demonstrated a negative correlation between the spins of paired electrons from a superconductor. The researchers used spin filters made of nanomagnets and quantum dots to achieve this, as reported in the scientific journal Nature.
Researchers at the University of Queensland have confirmed black hole quantum properties, including superposition and wildly different masses simultaneously. The study reinforces early theories by Jacob Bekenstein, postulating that black holes can only have specific mass values within certain bands or ratios.
Physicists have observed novel quantum effects in a topological insulator at room temperature, opening up new possibilities for efficient quantum technologies. This breakthrough uses bismuth-based topological materials to bypass the need for ultra-low temperatures.
Garmin GPSMAP 67i with inReach
Garmin GPSMAP 67i with inReach provides rugged GNSS navigation, satellite messaging, and SOS for backcountry geology and climate field teams.
Researchers at the University of Tokyo have identified possible solutions to limitations of qubits for quantum computing. They successfully controlled temperature and movement of trapped electrons in a vacuum using hybrid quantum systems, paving the way for potential applications in quantum technology.
Australian researchers have engineered a quantum box for polaritons in a two-dimensional material, achieving large polariton densities and a partially 'coherent' quantum state. The novel technique allows researchers to access striking collective quantum phenomena and enable ultra-energy-efficient technologies.
Researchers from Huazhong University of Science and Technology developed a scalable metalens array for optical addressing, enabling compact focusing of individual addressing beams onto quantum particles. The design features a periodical metalens molecule with a 'Z' shape, allowing for arbitrary focused spot arrays and low crosstalk.
A multi-institutional team has developed an efficient method for measuring high-dimensional qudits, which are more resistant to noise and can carry more information than qubits. The technique uses phase modulators and pulse shapers to characterize qudit entanglement with unprecedented precision.
Researchers at the University of Colorado Boulder have discovered a novel phenomenon in a type of quantum material that can change its electrical properties under specific conditions. The material, known as Mn3Si2Te6, exhibits colossal magnetoresistance when exposed to certain magnetic fields, allowing it to behave like a metal wire.
Apple iPad Pro 11-inch (M4)
Apple iPad Pro 11-inch (M4) runs demanding GIS, imaging, and annotation workflows on the go for surveys, briefings, and lab notebooks.
Researchers at Rice University have discovered a unique arrangement of atoms in iron-germanium crystals that leads to a collective dance of electrons. The phenomenon, known as a charge density wave, occurs when the material is cooled to a critically low temperature and exhibits standing waves of fluid electrons.
Researchers at NICT have developed a new systematic method to identify the optimal quantum operation sequence, enabling efficient task execution and contributing to improving quantum computer performance and reducing environmental impact. The method uses GRAPE algorithm to analyze all possible sequences of elementary quantum operations.
Researchers use lasers to cool atoms to absolute zero, revealing new phenomena in an unexplored realm of quantum magnetism. The creation of SU(N) matter opens a gateway to understanding the behavior of materials and potentially leading to novel properties.
Researchers at the Max Planck Institute have successfully generated up to 14 entangled photons using a single atom, enabling efficient creation of quantum computer building blocks. This breakthrough could facilitate scalable measurement-based quantum computing and enable secure data transmission over greater distances.
CalDigit TS4 Thunderbolt 4 Dock
CalDigit TS4 Thunderbolt 4 Dock simplifies serious desks with 18 ports for high-speed storage, monitors, and instruments across Mac and PC setups.
Researchers from the University of Pennsylvania establish a relationship between topology and entanglement, tying two major principles in physics together. The connection reveals that the genus of the Fermi surface is closely related to a measure of quantum entanglement called mutual information.
Physicists have created a way to simulate quantum entanglement between interacting particles using neural networks and fictitious 'ghost' electrons. This approach enables accurate predictions of molecule behavior, which could lead to breakthroughs in pharmaceutical development and material design.
Researchers have discovered nickel oxide superconductors with the presence of charge density waves (CDWs), which accompany superconductivity. This discovery reveals that nickelates are capable of forming correlated states, hosting a variety of quantum phases, including superconductivity.
Researchers successfully manipulated energy levels in tungsten diselenide to induce luminescence, a breakthrough for controlling matter through light fields. The discovery could enhance optical properties of organic semiconductors, leading to innovative LED and solar cell applications.
The researchers improved the coherence time of a previously developed quantum membrane dramatically, expanding its usability for various purposes. With a coherence time of one hundred milliseconds, the membrane can store sensitive quantum information for further processing in a quantum computer or network.
Rigol DP832 Triple-Output Bench Power Supply
Rigol DP832 Triple-Output Bench Power Supply powers sensors, microcontrollers, and test circuits with programmable rails and stable outputs.
Rice University engineers have developed a novel approach to manipulating the magnetic and electronic properties of 2D materials by stressing them with contoured substrates. The technique, inspired by recent discoveries in twisted 2D materials, allows for unprecedented control over quantum effects.
Researchers at ETH Zurich successfully demonstrated a protocol for gentle, controlled measurement of mechanical quantum states in hybrid qubit-resonator devices. This breakthrough enables applications such as quantum error correction and more, paving the way for advanced technological innovations.
Researchers have created a giant magnetochiral anisotropy effect in topological insulator nanowires, allowing for highly controllable current rectification. This discovery opens the pathway for technological applications and demonstrates a significant step towards achieving topological qubits.
Researchers at TU Wien and Hiroshima University have corrected a long-standing flaw in the double-slit experiment, proving that individual particles can move along multiple paths at once. By detecting a single neutron, they were able to determine its presence on each path with high accuracy.
Researchers use computational detective work to verify the existence of a 3D quantum spin liquid in cerium zirconium pyrochlore, overcoming decades-long challenge. The material exhibits fractionalized spin excitations, where electrons do not arrange their spins in relation to neighbors.
AmScope B120C-5M Compound Microscope
AmScope B120C-5M Compound Microscope supports teaching labs and QA checks with LED illumination, mechanical stage, and included 5MP camera.
A Harvard-led team created a new method for processing quantum information that allows for the dynamic change of atoms' layout during computation, expanding capabilities and enabling self-correction of errors. This approach uses entanglement to connect atoms remotely and can process exponentially large amounts of information.
Researchers at Swansea University developed a new method to stop molecular rotation using ultra-low energy, which governs surface chemistry processes. They achieved this by manipulating the quantum state of a molecule just before collision with a surface.
Researchers at University of Innsbruck and ETH Zurich propose a new concept for a high-precision quantum sensor using microcavities and levitated nanoparticles. By exploiting fast unstable dynamics, they demonstrate mechanical squeezing reducing motional fluctuations below zero-point motion.
A POSTECH research team has developed a platform that can control and measure the properties of solid materials with light. This breakthrough enables the manipulation of quantum states in solids, which can be effectively used in quantum systems.
A team of US and Chinese researchers has directly measured how individual electronic quantum states in a kagome magnet respond to external magnetic fields, shifting energy in an unusual manner. They found that Dirac fermions exhibit momentum-dependent shifts under the applied field.
Apple MacBook Pro 14-inch (M4 Pro)
Apple MacBook Pro 14-inch (M4 Pro) powers local ML workloads, large datasets, and multi-display analysis for field and lab teams.
Researchers at Rice University have developed a new type of electronics using undulating graphene, which creates mini channels that produce detectable magnetic fields. This technology has the potential to facilitate nanoscale optical devices and valleytronics applications, such as converging lenses and collimators.
Physicists at ETH Zurich demonstrate that vacuum fluctuations can cause a breakdown of topological protection in the integer quantum Hall effect. Exposing a quantum Hall system to strongly enhanced quantum vacuum fluctuations of a tight cavity provides a novel route to modify quantum states.
Scientists create triatomic molecules by applying radio-frequency pulse to an ultracold mixture of sodium and potassium atoms. The resulting association signal suggests a strong binding between the molecules.
Kestrel 3000 Pocket Weather Meter
Kestrel 3000 Pocket Weather Meter measures wind, temperature, and humidity in real time for site assessments, aviation checks, and safety briefings.
Researchers at ETH Zurich have successfully implemented a novel measurement scheme for finite-energy states, extending the coherence time of a trapped ion quantum oscillator by a factor of three. This breakthrough addresses a major challenge in quantum computing and brings us closer to enabling fault-tolerant quantum computers.
Scientists at Georgia Tech Research Institute have demonstrated a new approach for transporting trapped ion pairs through a single laser beam to create entangled qubits. This method reduces the need for multiple optical switches and complex controls, potentially simplifying quantum systems.
A team of researchers from Japan Advanced Institute of Science and Technology successfully detects thermally excited magnons in a yttrium iron garnet sample using a diamond-based quantum sensor. This breakthrough enables the detection of thermal magnon currents, opening doors to heat-controlled quantum devices.
A new graphene-based platform allows researchers to control the interaction strength between electrons and holes, enabling the formation of quantum condensates at room temperature. The platform's tunability enables testing of theoretical predictions about superconductivity and its potential for higher temperature limits.
Physicist Guido Pagano has won a prestigious CAREER award from the National Science Foundation (NSF) to study quantum entanglement and develop new error-correcting tools for quantum computation. He aims to understand how measurement affects entangled systems and create tools to correct errors caused by quantum decoherence.
Apple Watch Series 11 (GPS, 46mm)
Apple Watch Series 11 (GPS, 46mm) tracks health metrics and safety alerts during long observing sessions, fieldwork, and remote expeditions.
Scientists from Tampere University and National Research Council of Canada develop a technique using two-photon N00N states to create entangled photon pairs with improved measurement precision. This allows for spatially structured quantum states of light that can go beyond classical limits in rotation estimation.
Physicists at Rice University have found telltale signs of antiferromagnetic spin fluctuations coupled to superconductivity in uranium ditelluride, a rare material promising fault-free quantum computing. The discovery upends the leading explanation of how this state of matter arises in the material.
A team of researchers demonstrates an adaptive optimization protocol that can engineer arbitrary high-dimensional quantum states, overcoming limitations due to noise and experimental imperfections. The protocol uses measured agreement between produced and target state to tune experimental parameters.
A team of researchers at Imperial College London has generated and observed non-Gaussian states of high-frequency sound waves comprising over a trillion atoms. This breakthrough makes important strides towards generating macroscopic quantum states that will enable future quantum internet components to be developed.
GoPro HERO13 Black
GoPro HERO13 Black records stabilized 5.3K video for instrument deployments, field notes, and outreach, even in harsh weather and underwater conditions.
Scientists from TUM and Google Quantum AI used a highly controllable quantum processor to simulate exotic particles called anyons, which can emerge as collective excitations in two-dimensional systems. The study reveals the properties of these particles through braiding statistics, a key feature of topologically ordered states.
Researchers at Osaka City University developed a new quantum algorithm that calculates potential energy curves of molecules without controlled time evolutions. This addresses issues with conventional quantum phase estimation algorithms, enabling parallel processing and efficient full-CI calculations.
A new study shows that quantum systems can exist in a superposition of forward and backward time flows, blurring the traditional concept of time. This phenomenon has practical implications for quantum thermodynamics, potentially offering advantages in thermal machines and refrigerators.
GQ GMC-500Plus Geiger Counter
GQ GMC-500Plus Geiger Counter logs beta, gamma, and X-ray levels for environmental monitoring, training labs, and safety demonstrations.
Researchers created a new ultra-thin material with quantum properties emulating rare earth compounds. The material exhibits the Kondo effect, leading to macroscopically entangled state of matter producing heavy-fermion systems.
A new monitoring protocol preserves coherence in quantum Otto engines, leading to improved power output and reliability. The 'repeated contacts scheme' avoids measurement-induced quantum effects, making the engine more capable and dependable.
Researchers have successfully demonstrated laser emission from ultra-thin crystals consisting of three atomic layers, a breakthrough that could lead to miniaturized circuits and future quantum applications. The discovery showcases the potential of these materials as a platform for new nanolasers capable of operating at room temperature.
Apple AirPods Pro (2nd Generation, USB-C)
Apple AirPods Pro (2nd Generation, USB-C) provide clear calls and strong noise reduction for interviews, conferences, and noisy field environments.
A new analytical technique combines quantum physics and molecular biology to track biomolecule changes in less than a trillionth of a second. By analyzing the collective movement of atoms, researchers were able to reduce 6000 dimensions to four and characterize conical intersections of quantum states in complex molecules.