Bluesky Facebook Reddit Email

Life Sciences

Comprehensive exploration of living organisms, biological systems, and life processes across all scales from molecules to ecosystems. Encompasses cutting-edge research in biology, genetics, molecular biology, ecology, biochemistry, microbiology, botany, zoology, evolutionary biology, genomics, and biotechnology. Investigates cellular mechanisms, organism development, genetic inheritance, biodiversity conservation, metabolic processes, protein synthesis, DNA sequencing, CRISPR gene editing, stem cell research, and the fundamental principles governing all forms of life on Earth.

447,757 articles | 2542 topics

Health and Medicine

Comprehensive medical research, clinical studies, and healthcare sciences focused on disease prevention, diagnosis, and treatment. Encompasses clinical medicine, public health, pharmacology, epidemiology, medical specialties, disease mechanisms, therapeutic interventions, healthcare innovation, precision medicine, telemedicine, medical devices, drug development, clinical trials, patient care, mental health, nutrition science, health policy, and the application of medical science to improve human health, wellbeing, and quality of life across diverse populations.

431,843 articles | 751 topics

Social Sciences

Comprehensive investigation of human society, behavior, relationships, and social structures through systematic research and analysis. Encompasses psychology, sociology, anthropology, economics, political science, linguistics, education, demography, communications, and social research methodologies. Examines human cognition, social interactions, cultural phenomena, economic systems, political institutions, language and communication, educational processes, population dynamics, and the complex social, cultural, economic, and political forces shaping human societies, communities, and civilizations throughout history and across the contemporary world.

260,756 articles | 745 topics

Physical Sciences

Fundamental study of the non-living natural world, matter, energy, and physical phenomena governing the universe. Encompasses physics, chemistry, earth sciences, atmospheric sciences, oceanography, materials science, and the investigation of physical laws, chemical reactions, geological processes, climate systems, and planetary dynamics. Explores everything from subatomic particles and quantum mechanics to planetary systems and cosmic phenomena, including energy transformations, molecular interactions, elemental properties, weather patterns, tectonic activity, and the fundamental forces and principles underlying the physical nature of reality.

257,913 articles | 1552 topics

Applied Sciences and Engineering

Practical application of scientific knowledge and engineering principles to solve real-world problems and develop innovative technologies. Encompasses all engineering disciplines, technology development, computer science, artificial intelligence, environmental sciences, agriculture, materials applications, energy systems, and industrial innovation. Bridges theoretical research with tangible solutions for infrastructure, manufacturing, computing, communications, transportation, construction, sustainable development, and emerging technologies that advance human capabilities, improve quality of life, and address societal challenges through scientific innovation and technological progress.

225,386 articles | 998 topics

Scientific Community

Study of the practice, culture, infrastructure, and social dimensions of science itself. Addresses how science is conducted, organized, communicated, and integrated into society. Encompasses research funding mechanisms, scientific publishing systems, peer review processes, academic ethics, science policy, research institutions, scientific collaboration networks, science education, career development, research programs, scientific methods, science communication, and the sociology of scientific discovery. Examines the human, institutional, and cultural aspects of scientific enterprise, knowledge production, and the translation of research into societal benefit.

193,043 articles | 157 topics

Space Sciences

Comprehensive study of the universe beyond Earth, encompassing celestial objects, cosmic phenomena, and space exploration. Includes astronomy, astrophysics, planetary science, cosmology, space physics, astrobiology, and space technology. Investigates stars, galaxies, planets, moons, asteroids, comets, black holes, nebulae, exoplanets, dark matter, dark energy, cosmic microwave background, stellar evolution, planetary formation, space weather, solar system dynamics, the search for extraterrestrial life, and humanity's efforts to explore, understand, and unlock the mysteries of the cosmos through observation, theory, and space missions.

29,662 articles | 175 topics

Research Methods

Comprehensive examination of tools, techniques, methodologies, and approaches used across scientific disciplines to conduct research, collect data, and analyze results. Encompasses experimental procedures, analytical methods, measurement techniques, instrumentation, imaging technologies, spectroscopic methods, laboratory protocols, observational studies, statistical analysis, computational methods, data visualization, quality control, and methodological innovations. Addresses the practical techniques and theoretical frameworks enabling scientists to investigate phenomena, test hypotheses, gather evidence, ensure reproducibility, and generate reliable knowledge through systematic, rigorous investigation across all areas of scientific inquiry.

21,889 articles | 139 topics

Mathematics

Study of abstract structures, patterns, quantities, relationships, and logical reasoning through pure and applied mathematical disciplines. Encompasses algebra, calculus, geometry, topology, number theory, analysis, discrete mathematics, mathematical logic, set theory, probability, statistics, and computational mathematics. Investigates mathematical structures, theorems, proofs, algorithms, functions, equations, and the rigorous logical frameworks underlying quantitative reasoning. Provides the foundational language and tools for all scientific fields, enabling precise description of natural phenomena, modeling of complex systems, and the development of technologies across physics, engineering, computer science, economics, and all quantitative sciences.

3,023 articles | 113 topics

Electrical control over designer quantum materials

The study introduces a versatile method to tune the interaction strength in 2D heterostructures by applying electrical fields. This allows for the exploration of wide parameter ranges and opens up new perspectives for quantum simulation.

Using quantum Parrondo’s random walks for encryption

Assistant Professor Kang Hao Cheong and his team discovered that chaotic switching for quantum coin Parrondo's games has similar underlying ideas to encryption. They found that using pre-generated chaotic sequences enhances the work, making it easier to invert the encrypted message to obtain the original state.

UArizona engineer awarded $5M to build quantum-powered navigation tools

The Quantum Sensors project aims to create ultrasensitive gyroscopes and accelerometers using quantum states, enabling precise measurements for self-driving cars and spacecraft. This technology could capture information not provided by GPS, improving navigation and stability in various environments.

SAMSUNG T9 Portable SSD 2TB

SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.

On eternal imbalance

Researchers have discovered a new theory that explains the behavior of quantum systems with long-range interactions. The theory predicts that these systems will settle into meta-stable states rather than reaching equilibrium, leading to unique effects such as spiral arms in galaxies.

Quantum simulation: Measurement of entanglement made easier

Researchers have developed a more efficient method for measuring entanglement in quantum simulators, allowing for new insights into the structure of the quantum state. The new protocol uses insights from quantum field theory to perform tomography with significantly fewer measurements.

Davis Instruments Vantage Pro2 Weather Station

Davis Instruments Vantage Pro2 Weather Station offers research-grade local weather data for networked stations, campuses, and community observatories.

Cooling LIGO's mirrors to near quantum ground state

Researchers have demonstrated cooling a large-scale object to nearly the motional quantum ground state, increasing sensitivity in detecting gravitational waves. The method achieved an average phonon occupation of 10.8, suppressing quantum back-action noise by 11 orders of magnitude.

UChicago scientists harness molecules into single quantum state

Researchers at UChicago have successfully brought multiple molecules into a single quantum state, a major technological feat. This achievement has the potential to open new fields in quantum physics and chemistry, enabling innovative applications such as unhackable networks and earthquake sensors.

Quantum steering for more precise measurements

Researchers at the University of Basel have proposed a new scheme for measuring magnetic or electric fields using quantum steering, which enhances measurement precision. By analyzing entangled particle states, scientists can make more accurate predictions about possible measurement results.

Atomic nuclei in the quantum swing

Researchers have successfully controlled quantum jumps in atomic nuclei using X-ray light, enabling ultra-precise atomic clocks and potentially powerful nuclear batteries. The technique requires precise control of high-energy X-ray pulses to manipulate quantum dynamics.

Quantifying quantumness: A mathematical project 'of immense beauty'

Scientists have found a way to characterize the degree of quantumness in physical systems, which is essential for understanding quantum computing and sensing advantages. By analyzing extrema states, researchers identified a mathematical representation called Majorana constellation, which covers more of the sphere as quantumness increases.

Nikon Monarch 5 8x42 Binoculars

Nikon Monarch 5 8x42 Binoculars deliver bright, sharp views for wildlife surveys, eclipse chases, and quick star-field scans at dark sites.

Harvard team uses laser to cool polyatomic molecule

A Harvard team has successfully cooled a six-atom molecule to just above absolute zero using laser light, marking the first time such a complex molecule has been achieved. The breakthrough opens up new avenues of study in quantum simulation and computation, particle physics, and quantum chemistry.

Healing an Achilles' heel of quantum entanglement

Researchers have developed a new method to calculate the exact entanglement cost of a given quantum state, allowing for more precise measurement and application in various quantum research areas. This breakthrough resolves a longstanding investigation in entanglement theory, enabling efficient computation and broad applicability.

Sony Alpha a7 IV (Body Only)

Sony Alpha a7 IV (Body Only) delivers reliable low-light performance and rugged build for astrophotography, lab documentation, and field expeditions.

Quantum exciton found in magnetic van der Waals material NiPS3

Researchers discovered a novel exciton state in magnetic van der Waals material NiPS3, which is intrinsically a quantum state arising from a transition between two energy states. This breakthrough has significant implications for the field of quantum information and computing.

2D semiconductors found to be close-to-ideal fractional quantum hall platform

Researchers at Columbia University have observed fractional quantum Hall states (FQHS) in a monolayer 2D semiconductor, demonstrating excellent intrinsic quality and establishing it as a unique test platform for studying FQHS. The study reveals unexpected behavior and suggests that 2D semiconductors are close-to-ideal platforms to furt...

Quantum jump tipping the balance

Researchers at the Max Planck Institute for Nuclear Physics have successfully measured infinitesimal changes in mass of individual atoms for the first time, opening a new world for precision physics. The team discovered a previously unobserved quantum state in rhenium, which could be interesting for future atomic clocks.

New protocol identifies fascinating quantum states

Researchers at the University of Innsbruck propose a new measurement protocol to identify topological states in interacting systems. This method can extract topological invariants from statistical correlations of simple, local random measurements.

Perturbation-free studies of single molecules

Researchers at the University of Basel developed a non-invasive technique to study individual molecules precisely. The new force spectroscopy method detects molecular vibrations without perturbing its quantum state.

Celestron NexStar 8SE Computerized Telescope

Celestron NexStar 8SE Computerized Telescope combines portable Schmidt-Cassegrain optics with GoTo pointing for outreach nights and field campaigns.

A better starting point for exploring entanglement

Researchers propose updated equations that simplify calculations for distinguishing between two types of 'non-Gaussian curve' and genuinely quantum states. This approach could speed up advances in quantum communication and computation.

A quantum of solid

Scientists have isolated and cooled a nanoparticle in a solid, achieving macroscopic quantum control for the first time. By removing thermal energy and isolating the particle from its environment, researchers successfully cooled the glass bead to ultra-cold temperatures near absolute zero.

Cooling a 'massive' solid-state nanoparticle into its quantum ground state

Researchers laser-cooled a 150-nanometer glass sphere containing 100 million atoms to its quantum ground state, revolutionizing the study of macro-quantum physics. This achievement enables unprecedented opportunities to test fundamental physics and probe the boundaries between classical and quantum mechanics.

How sensitive can a quantum detector be?

A new device created by Aalto University and Lund University has set a new standard for measuring the tiniest energies in superconducting circuits. The calorimeter uses a strip of copper one thousand times thinner than a human hair to detect energy changes, providing essential insights into quantum thermodynamics.

Apple iPhone 17 Pro

Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.

New method for detecting quantum states of electrons

Researchers at OIST Graduate University have developed a new method to detect electrons' transitions to quantum states using image charge detection. This technique has the potential to create a ten-centimeter chip, reducing the size of current quantum computers and bringing them closer to practical use.

Apple Watch Series 11 (GPS, 46mm)

Apple Watch Series 11 (GPS, 46mm) tracks health metrics and safety alerts during long observing sessions, fieldwork, and remote expeditions.

Quantum tricks to unveil the secrets of topological materials

Researchers at TU Wien and China's University of Science and Technology have developed a new method to identify topologically interesting quantum states in materials. By manipulating the geometry of atomic arrangements using light waves, they can reveal clear signatures indicating whether such states exist or not.

Will light be the basis for quantum computing?

A team from INRS has successfully generated high-dimensional cluster states and implemented novel quantum operations, paving the way for one-way quantum computing. This breakthrough uses photons as a data medium, leveraging their unique properties to increase information storage capacity and boost computational power.

Mathematical understanding of Bell nonlocality and quantum steering

Bell nonlocality and EPR steering are characterized using strict definitions, establishing a foundation for defining metric functions of Bell locality and EPR steering. The study generalizes previous results and provides sufficient conditions for determining the quantum state's EPR steerability.

Kestrel 3000 Pocket Weather Meter

Kestrel 3000 Pocket Weather Meter measures wind, temperature, and humidity in real time for site assessments, aviation checks, and safety briefings.

Coping with errors in the quantum age

ETH Zurich researchers have demonstrated a novel quantum error correction technique that can monitor and correct errors in real-time. The technique, which uses trapped ions to encode quantum information, has been successfully tested with repeated measurements on the same system, exceeding previous experimental limits.

JILA researchers see signs of interactive form of quantum matter

Researchers have isolated groups of a few atoms and precisely measured their multi-particle interactions within an atomic clock. The study reveals unexpected results when three or more atoms are together, including nonlinear shifts in the clock's frequency and long-lived entangled states.

Quantum chains in graphene nanoribbons

A material called graphene nano-ribbons has different electronic properties depending on its shape and width, allowing for the creation of tailor-made semiconductors, metals or insulators. The ribbons form a chain of interlinked quantum states with adjustable electronic structure.

Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C)

Anker Laptop Power Bank 25,000mAh (Triple 100W USB-C) keeps Macs, tablets, and meters powered during extended observing runs and remote surveys.

Teaching quantum physics to a computer

Researchers developed machine learning software that allows computers to learn the quantum state of complex systems based on experimental observations. This approach enables faster tomography for quantum states and has implications for testing quantum computers with many qubits.

Apple MacBook Pro 14-inch (M4 Pro)

Apple MacBook Pro 14-inch (M4 Pro) powers local ML workloads, large datasets, and multi-display analysis for field and lab teams.

Fingerprints of quantum entanglement

Researchers developed a novel verification method to prove large-scale entanglement with only a single measurement run, significantly reducing time and resources required. This breakthrough enables the reliable benchmarking of future quantum devices with unprecedented efficiency.

New tool for characterizing quantum simulators

Researchers from the University of Innsbruck have established a new method to efficiently characterize large quantum states, enabling the development of large-scale quantum simulators. The new method requires significantly fewer measurements than current gold standard, opening up possibilities for complex quantum simulations.

Creality K1 Max 3D Printer

Creality K1 Max 3D Printer rapidly prototypes brackets, adapters, and fixtures for instruments and classroom demonstrations at large build volume.

Quantum matter: Shaken, but not stirred

Scientists have experimentally realized a stable exotic quantum state that resists mixing due to disorder, defying predictions of conventional quantum mechanics. The discovery could have implications for the development of robust quantum computers.

'Weak measurement' with strong results

A research team at TU Wien developed a new method that combines strong measurements with weak measurements to reconstruct quantum states. This approach allows for higher precision and accuracy in determining the quantum state, reducing the need for post-processing.

Fast track control accelerates switching of quantum bits

Researchers developed a new framework for faster control of a quantum bit, accelerating switching with unprecedented speed. The technique enables less prone to errors in high-speed operation, paving the way for quantum applications like secure communications and simulation of complex systems.

Precise quantum cloning: Possible pathway to secure communication

Researchers at ANU and UQ have developed a cloning method that produces higher-quality quantum clones than existing methods, with a success rate of about 5%. This breakthrough could enable ultra-secure encryption over long distances, overcoming the limitations of current quantum communication systems.

AmScope B120C-5M Compound Microscope

AmScope B120C-5M Compound Microscope supports teaching labs and QA checks with LED illumination, mechanical stage, and included 5MP camera.

RMIT researchers make leap in measuring quantum states

A breakthrough in quantum tomography has been achieved by RMIT researchers, demonstrating a new technique that significantly reduces resources and improves robustness against noise. This innovation enables the characterisation of large quantum states, a critical bottleneck in quantum information science.

Surprising qualities of insulator ring surfaces

Researchers have discovered that ring-shaped topological insulators display characteristics similar to those in spherical materials. The study reveals a zero-energy state on the surface of ring-shaped insulators and a coupling between charge carriers and curvature, leading to gauge fields and unique electron spin behavior.

Controlling quantum states atom by atom

A team of researchers has developed a method to precisely alter the quantum mechanical states of electrons in an array of quantum boxes. This allows for the investigation of interactions between various types of atoms and electrons, crucial for advancing quantum technologies.

New state of matter detected in a two-dimensional material

A team of researchers has found evidence of a mysterious new state of matter, known as a quantum spin liquid, in a real two-dimensional material. The discovery matches theoretical models and could lead to the development of faster quantum computers.

A deep look into a single molecule

Researchers at PTB have demonstrated non-destructive state detection technique for molecular ions, enabling novel spectroscopy methods with applications in chemistry and fundamental physics. The technique enables direct observation of quantum jumps in isolated molecules.

Meta Quest 3 512GB

Meta Quest 3 512GB enables immersive mission planning, terrain rehearsal, and interactive STEM demos with high-resolution mixed-reality experiences.

Good quantum states and bad quantum states

Scientists from TU Wien and Free University of Berlin developed a quantum tomography method to measure and describe large quantum systems precisely with few measurements. This technique uses continuous matrix product states, which represent a vanishingly small fraction of all possible states but are physically important.

Cooling massive objects to the quantum ground state

Researchers have developed an innovative cooling scheme for massive mechanical resonators, overcoming the limitation of quantum backaction. By utilizing destructive quantum interference in a cavity optomechanical system, they achieve ground state cooling beyond three orders of magnitude.

Scientists set quantum speed limit

Researchers at University of California - Berkeley proved a fundamental relationship between energy and time, setting a 'quantum speed limit' on various processes. The discovery has implications for quantum computing, tunneling, and optical switching.

From light into matter, nothing seems to stop quantum teleportation

Researchers at Université de Genève have successfully teleported the quantum state of a photon to a crystal over 25 kilometers of optical fibre, surpassing their previous record of 6 kilometers. This experiment demonstrates that quantum state can exist independently of material composition.

DJI Air 3 (RC-N2)

DJI Air 3 (RC-N2) captures 4K mapping passes and environmental surveys with dual cameras, long flight time, and omnidirectional obstacle sensing.

Squeezed quantum communication

Physicists successfully transmit a flash of light in a sensitive quantum state through the atmosphere, enabling secure quantum communication. The technology has potential advantages over current methods, including ability to transmit in sunlight and higher transmission rates.

Molecular engineers record an electron's quantum behavior

Researchers developed a technique to control and observe individual electrons in nanoscale defects, enabling the creation of quantum-state snapshots. This breakthrough contributes to quantum information processing and could accelerate development of quantum computing devices.

UChicago to lead quantum engineering research team

Researchers will develop piezoelectric materials and nanometer-scale electromechanical devices to transfer information between quantum states and light using mechanical motion as an intermediary. The goal is to establish a technology that connects individual quantum states and enables the creation of quantum networks.