Bluesky Facebook Reddit Email

Integrating research and clinical care to uncover secrets of brain development

12.20.23 | University of Pittsburgh

Apple iPhone 17 Pro

Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.


The human brain continues to be built after we are born for far longer than previously recognized, suggests research by Shawn Sorrells , assistant professor of neuroscience in the Kenneth P. Dietrich School of Arts and Sciences. Sorrells s research on postnatal brain development, published today inthe journal Nature, shines light on fundamental processes that contribute to the development of important brain functions, such as learning, memory and spatial navigation.

The new research suggests that a subset of inhibitory neurons within the entorhinal cortex, or EC -- an area of the brain essential for forming memories -- continue to migrate into this region where they build new neuronal connections from birth through toddlerhood. The study suggests that extensive postnatal neuronal migration across the EC might underlie critical neuroplasticity periods during which the brain is especially receptive to changes and adaptations. The discovery also points to a possible reason why EC neurons are more susceptible to neurodegeneration, since other recent studies have found that this same type of neuron is impacted early in Alzheimer’s disease.

By analyzing brain samples that were provided, in part, by the epilepsy tissue bank at UPMC Children s Hospital and the Neuropathology Department at UPMC Presbyterian Hospital, Sorrells' research team was first to show that, unlike what was previously thought, neuronal migration of such scale and duration is extensive within regions that control thoughts and emotions. The discovery offers an explanation for how the human brain makes billions of new neurons over a very short time span through a mechanism that allows neurons to continue arriving after birth.

It is generally thought that the brain is done recruiting neurons by the time an individual is born,” said Sorrells. We were incredibly excited to learn that not only does large-scale neuronal migration continue into specific brain regions, but that this process also continues into ages when children are crawling and beginning to walk.”

Nature

10.1038/s41586-023-06981-x

Imaging analysis

Human tissue samples

Protracted Neuronal Recruitment in the Temporal Lobe of Young Children

20-Dec-2023

A.A.B is a co-founder and is on the Scientific Advisory Board of Neurona Therapeutics. C.J.Y is a Scientific Advisory Board member for and holds equity in Related Sciences and ImmunAI, a consultant for and holds equity in Maze Therapeutics, and a consultant for TReX Bio. C.J.Y. has received research support from Chan Zuckerberg Initiative, Chan Zuckerberg Biohub, and Genentech

Keywords

Article Information

Contact Information

Anastasia Gorelova
University of Pittsburgh
gorelovaa@upmc.edu
Brandie Jefferson
University of Pittsburgh
brandie@pitt.edu

How to Cite This Article

APA:
University of Pittsburgh. (2023, December 20). Integrating research and clinical care to uncover secrets of brain development. Brightsurf News. https://www.brightsurf.com/news/1GREYQ58/integrating-research-and-clinical-care-to-uncover-secrets-of-brain-development.html
MLA:
"Integrating research and clinical care to uncover secrets of brain development." Brightsurf News, Dec. 20 2023, https://www.brightsurf.com/news/1GREYQ58/integrating-research-and-clinical-care-to-uncover-secrets-of-brain-development.html.