Bluesky Facebook Reddit Email

Life Sciences

Comprehensive exploration of living organisms, biological systems, and life processes across all scales from molecules to ecosystems. Encompasses cutting-edge research in biology, genetics, molecular biology, ecology, biochemistry, microbiology, botany, zoology, evolutionary biology, genomics, and biotechnology. Investigates cellular mechanisms, organism development, genetic inheritance, biodiversity conservation, metabolic processes, protein synthesis, DNA sequencing, CRISPR gene editing, stem cell research, and the fundamental principles governing all forms of life on Earth.

447,757 articles | 2542 topics

Health and Medicine

Comprehensive medical research, clinical studies, and healthcare sciences focused on disease prevention, diagnosis, and treatment. Encompasses clinical medicine, public health, pharmacology, epidemiology, medical specialties, disease mechanisms, therapeutic interventions, healthcare innovation, precision medicine, telemedicine, medical devices, drug development, clinical trials, patient care, mental health, nutrition science, health policy, and the application of medical science to improve human health, wellbeing, and quality of life across diverse populations.

431,843 articles | 751 topics

Social Sciences

Comprehensive investigation of human society, behavior, relationships, and social structures through systematic research and analysis. Encompasses psychology, sociology, anthropology, economics, political science, linguistics, education, demography, communications, and social research methodologies. Examines human cognition, social interactions, cultural phenomena, economic systems, political institutions, language and communication, educational processes, population dynamics, and the complex social, cultural, economic, and political forces shaping human societies, communities, and civilizations throughout history and across the contemporary world.

260,756 articles | 745 topics

Physical Sciences

Fundamental study of the non-living natural world, matter, energy, and physical phenomena governing the universe. Encompasses physics, chemistry, earth sciences, atmospheric sciences, oceanography, materials science, and the investigation of physical laws, chemical reactions, geological processes, climate systems, and planetary dynamics. Explores everything from subatomic particles and quantum mechanics to planetary systems and cosmic phenomena, including energy transformations, molecular interactions, elemental properties, weather patterns, tectonic activity, and the fundamental forces and principles underlying the physical nature of reality.

257,913 articles | 1552 topics

Applied Sciences and Engineering

Practical application of scientific knowledge and engineering principles to solve real-world problems and develop innovative technologies. Encompasses all engineering disciplines, technology development, computer science, artificial intelligence, environmental sciences, agriculture, materials applications, energy systems, and industrial innovation. Bridges theoretical research with tangible solutions for infrastructure, manufacturing, computing, communications, transportation, construction, sustainable development, and emerging technologies that advance human capabilities, improve quality of life, and address societal challenges through scientific innovation and technological progress.

225,386 articles | 998 topics

Scientific Community

Study of the practice, culture, infrastructure, and social dimensions of science itself. Addresses how science is conducted, organized, communicated, and integrated into society. Encompasses research funding mechanisms, scientific publishing systems, peer review processes, academic ethics, science policy, research institutions, scientific collaboration networks, science education, career development, research programs, scientific methods, science communication, and the sociology of scientific discovery. Examines the human, institutional, and cultural aspects of scientific enterprise, knowledge production, and the translation of research into societal benefit.

193,043 articles | 157 topics

Space Sciences

Comprehensive study of the universe beyond Earth, encompassing celestial objects, cosmic phenomena, and space exploration. Includes astronomy, astrophysics, planetary science, cosmology, space physics, astrobiology, and space technology. Investigates stars, galaxies, planets, moons, asteroids, comets, black holes, nebulae, exoplanets, dark matter, dark energy, cosmic microwave background, stellar evolution, planetary formation, space weather, solar system dynamics, the search for extraterrestrial life, and humanity's efforts to explore, understand, and unlock the mysteries of the cosmos through observation, theory, and space missions.

29,662 articles | 175 topics

Research Methods

Comprehensive examination of tools, techniques, methodologies, and approaches used across scientific disciplines to conduct research, collect data, and analyze results. Encompasses experimental procedures, analytical methods, measurement techniques, instrumentation, imaging technologies, spectroscopic methods, laboratory protocols, observational studies, statistical analysis, computational methods, data visualization, quality control, and methodological innovations. Addresses the practical techniques and theoretical frameworks enabling scientists to investigate phenomena, test hypotheses, gather evidence, ensure reproducibility, and generate reliable knowledge through systematic, rigorous investigation across all areas of scientific inquiry.

21,889 articles | 139 topics

Mathematics

Study of abstract structures, patterns, quantities, relationships, and logical reasoning through pure and applied mathematical disciplines. Encompasses algebra, calculus, geometry, topology, number theory, analysis, discrete mathematics, mathematical logic, set theory, probability, statistics, and computational mathematics. Investigates mathematical structures, theorems, proofs, algorithms, functions, equations, and the rigorous logical frameworks underlying quantitative reasoning. Provides the foundational language and tools for all scientific fields, enabling precise description of natural phenomena, modeling of complex systems, and the development of technologies across physics, engineering, computer science, economics, and all quantitative sciences.

3,023 articles | 113 topics

Researchers discover 'swing-dancing' pairs of electrons

Researchers have discovered electrons that form pairs but don't reach a superconducting state, a breakthrough that could lead to new materials with room temperature superconductivity. This finding has significant implications for technologies such as high-speed rail and quantum computers.

Zooming in

Researchers from UCSB have successfully measured the frequency of radiation emitted by a single electron for the first time. The team used a tabletop instrument to detect emissions from an individual, orbiting electron and witnessed over 100,000 single electrons.

SAMSUNG T9 Portable SSD 2TB

SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.

New tabletop detector 'sees' single electrons

Physicists at MIT have developed a new tabletop particle detector that can identify single electrons in radioactive gas. The detector uses a magnet to trap and detect the weak signals emitted by the electrons, which are then used to map their precise activity over several milliseconds.

You can't play checkers with charge ordering

Researchers at CIFAR discover that charge ordering creates a stripy pattern, not a checkerboard, and competes with superconductivity along one direction. This discovery sheds light on the role of charge ordering in propelling electrons into tight pairs, allowing for free movement.

Simulating superconducting materials with ultracold atoms

A team of researchers at Rice University has successfully simulated superconducting materials using ultracold atoms, observing antiferromagnetic order in the process. The simulation is based on the Hubbard model, a set of mathematical equations that could explain high-temperature superconductivity.

Meta Quest 3 512GB

Meta Quest 3 512GB enables immersive mission planning, terrain rehearsal, and interactive STEM demos with high-resolution mixed-reality experiences.

Evidence mounts for quantum criticality theory

A new study by Rice University and international collaborators adds to the growing evidence for a theory that explains high-temperature superconductivity and heavy fermion physics through quantum fluctuations. The research observed a sharp Fermi surface reconstruction, consistent with theoretical predictions of unconventional quantum c...

Holes in valence bands of nanodiamonds discovered

Researchers have discovered holes in the valence bands of nanodiamonds when they are dispersed in water, but not on a solid-state substrate. This discovery suggests that electrons at the surface of nanodiamonds can donate to surrounding water molecules, potentially influencing their chemical and catalytic properties.

Kestrel 3000 Pocket Weather Meter

Kestrel 3000 Pocket Weather Meter measures wind, temperature, and humidity in real time for site assessments, aviation checks, and safety briefings.

Choreography of an electron pair

Physicists have imaged and controlled the motion of two electrons in a helium atom using attosecond-timed laser pulses. By varying the interval between the ultraviolet and visible pulses, they created a movie of the electronic dance and even influenced its rhythm.

Scientists measure speedy electrons in silicon

Researchers used attosecond XUV spectroscopy to capture individual snapshots of electrons transitioning from the valence shell to the conduction band in silicon. The transition takes less than 450 attoseconds, allowing scientists to study complex electronic processes that were previously too fast to be approached experimentally.

Celestron NexStar 8SE Computerized Telescope

Celestron NexStar 8SE Computerized Telescope combines portable Schmidt-Cassegrain optics with GoTo pointing for outreach nights and field campaigns.

UNL study details laser pulse effects on electron behavior

Researchers at UNL pinpoint characteristics of laser pulses that can control electron behavior, enabling predictive and controlled electron motion. The study's findings offer a new signature for classifying experimentally produced laser pulses.

Ultra-short X-ray pulses explore the nano world

Researchers developed a methodology to directly measure the duration and temporal intensity distribution of ultra-short X-ray flashes. They characterized these pulses using streaking spectroscopy, revealing pulse durations of up to four and a half femtoseconds.

The fundamental constants are still constant

Researchers at PTB compared caesium and ytterbium atomic clocks, finding no detectable change in the mass ratio of protons to electrons up to a relative uncertainty of one part in ten million per year. This suggests fundamental constants remain stable over long periods.

Researchers hit milestone in accelerating particles with plasma

Scientists have successfully accelerated electrons to energies 400-500 times higher than conventional accelerators using a plasma wakefield acceleration technique. The breakthrough achieves high energy gains and efficiency, paving the way for future applications in medicine, national security, and high-energy physics research.

Rigol DP832 Triple-Output Bench Power Supply

Rigol DP832 Triple-Output Bench Power Supply powers sensors, microcontrollers, and test circuits with programmable rails and stable outputs.

Can the wave function of an electron be divided and trapped?

Physicists at Brown University have successfully trapped parts of an electron's wave function in liquid helium, a phenomenon that could fundamentally change our understanding of quantum mechanics. The discovery raises questions about the measurement process and the nature of particles at the quantum level.

New evidence for an exotic, predicted superconducting state

Researchers at Brown University have discovered an exotic superconducting state that can arise when a superconductor is exposed to a strong magnetic field. The team found that unpaired, spin-up electrons form Andreev bound states, enabling transport of supercurrents through non-superconducting regions.

Measuring the smallest magnets

Physicists at Weizmann Institute of Science measure magnetic interaction between two single electrons by binding their spins in opposite directions. The measurements reveal that the electrons interact like regular bar magnets, with north poles repelling and rotating until they draw near.

Fluke 87V Industrial Digital Multimeter

Fluke 87V Industrial Digital Multimeter is a trusted meter for precise measurements during instrument integration, repairs, and field diagnostics.

Highly charged ions

A new theoretical study by Marianna Safronova and colleagues identifies 10 highly charged ions, including samarium-14+ and neodymium-10+, suitable for atomic timekeeping and quantum information schemes. The researchers provide estimates of ion properties needed for experiments, enabling the development of more accurate clocks and qubits.

Ultrafast X-ray laser sheds new light on fundamental ultrafast dynamics

Researchers used an ultrafast optical laser and X-ray pulses to study the movement of electrons between atoms in exploding molecules. They observed that electrons can jump over surprisingly long distances, up to 10 times the length of the original molecule, shedding new light on microscopic dynamics.

Measuring the mass of 'massless' electrons

Harvard-led researchers successfully measured the collective mass of 'massless' electrons in motion in graphene, shedding light on fundamental kinetic properties. The discovery has implications for designing more sophisticated plasmonic devices with graphene and miniaturizing electronic circuitry.

Confirmed: Stellar behemoth self-destructs in a Type IIb supernova

For the first time, scientists have direct confirmation that a Wolf-Rayet star died in a violent explosion known as a Type IIb supernova. The discovery was made using the iPTF pipeline, which caught the supernova within hours of its explosion and triggered ground- and space-based telescopes to observe the event.

Creality K1 Max 3D Printer

Creality K1 Max 3D Printer rapidly prototypes brackets, adapters, and fixtures for instruments and classroom demonstrations at large build volume.

Stimulated mutual annihilation

The Joint Quantum Institute theorists have made detailed calculations of the dynamics of a positronium Bose-Einstein condensate. They report that above a critical density, collision processes destroy the internal coherence of the gas, posing challenges for the operation of a gamma-ray laser.

A glassy look for manganites

Scientists at Berkeley Lab discovered that the re-ordering of spin in manganites is not ultra-fast, but rather exhibits a glass-like state, with the restoration of crystalline order delayed. This separation of charge-ordering behavior from spin-ordering behavior may lead to new approaches for manipulating spin effects.

Beam on target!

The CEBAF accelerator successfully delivered its first data of the 12 GeV era, achieving 6.11 GeV electrons at 2 nanoAmps average current for over an hour. The milestone marks a major step in the commissioning process and demonstrates the ability to deliver high-energy beams beyond the original operational energy.

Aranet4 Home CO2 Monitor

Aranet4 Home CO2 Monitor tracks ventilation quality in labs, classrooms, and conference rooms with long battery life and clear e-ink readouts.

Electronics based on a 2-D electron gas

Scientists have successfully created a stable two-dimensional electron gas in strontium titanate, allowing for the manipulation of its electronic properties. This breakthrough could lead to the development of novel magnetic effects and superconductivity.

Helical electron and nuclear spin order in quantum wires

Researchers from the University of Basel have observed spontaneous magnetic order of electron and nuclear spins in a quantum wire at temperatures of 0.1 kelvin, exceeding previous limits of microkelvin range. This new state of matter is stabilized by nuclear spin coupling and mutual interactions between electrons.

New way to measure electron pair interactions

Researchers at Max Planck Institute in Germany develop new way to measure electron pair emission directly on a standard lab bench using time-of-flight spectrometers. This breakthrough allows for the quantification of electron correlation strength, crucial for designing novel materials with desirable properties.

Resistance makes waves

Scientists have found that charge-density waves destroy superconductivity at a maximum of minus 135 degrees Celsius. To develop high-temperature superconductors, researchers must search for substances not subject to these periodic fluctuations.

Salty surprise -- ordinary table salt turns into 'forbidden' forms

Scientists at DESY's X-ray source PETRA III and Carnegie Institution created new compounds like Na3Cl and NaCl3 under high pressure, violating classical chemistry rules. These discoveries pave the way for a more universal understanding of chemistry and potential novel applications.

Apple iPhone 17 Pro

Apple iPhone 17 Pro delivers top performance and advanced cameras for field documentation, data collection, and secure research communications.

A stopwatch for electron flashes

Researchers at the Laboratory for Attosecond Physics have developed a system to precisely measure the duration of energetic electron pulses using laser fields. This allows for the investigation of ultrafast processes in atoms and molecules, providing insights into nature's smallest scales.

JILA team develops 'spinning trap' to measure electron roundness

The JILA team has developed a method to spin electric and magnetic fields around trapped molecular ions, enabling the first measurement of an electron's electric dipole moment. This technique has major implications for future scientific understanding of the universe and may also be useful in quantum information experiments.

Sky & Telescope Pocket Sky Atlas, 2nd Edition

Sky & Telescope Pocket Sky Atlas, 2nd Edition is a durable star atlas for planning sessions, identifying targets, and teaching celestial navigation.

UCLA scientists explain the formation of unusual ring of radiation in space

A team of UCLA scientists successfully modeled and explained the unprecedented behavior of a previously unknown third radiation ring around Earth. The region was found to consist of different populations driven by various physical processes, with ultra-relativistic electrons posing significant hazards to satellites.

Proton weak charge determined for first time

Scientists have made the first experimental determination of the proton's weak charge, combining new data with published results. The result provides a rigorous test of the Standard Model and constraints on potential new physics at the Large Hadron Collider.

Novel topological crystalline insulator shows mass appeal

Researchers successfully introduced mass into Dirac electrons, a crucial step towards understanding topological crystalline insulators. The discovery provides new insights into the electronic behavior of these materials and paves the way for novel functionalities at the nanoscale.

Sony Alpha a7 IV (Body Only)

Sony Alpha a7 IV (Body Only) delivers reliable low-light performance and rugged build for astrophotography, lab documentation, and field expeditions.

Growth of disorder of electrons measured in dual temperature system

Aalto University researchers have measured entropy production of electrons in a dual temperature system, revealing a connection between two definitions of entropy and significant implications for future nanoelectronic devices. The study used conductors at different temperatures to measure electronic entropy production according to both...

Quantum communication controlled by resonance in 'artificial atoms'

Researchers have created a method to control quantum bits using resonances in artificial atoms, enabling exponential parallel computation and solving complex tasks. The technique combines classical solid-state physics with atomic physics techniques, allowing for controlled electron spin orientation without measurement.

Experimental quest to test Einstein's speed limit

Researchers used dysprosium to measure electron velocity and found the maximum speed of an electron is consistent with the speed of light. The experiment pushes the limits of Einstein's theory, potentially revealing new insights into particle physics.

Apple AirPods Pro (2nd Generation, USB-C)

Apple AirPods Pro (2nd Generation, USB-C) provide clear calls and strong noise reduction for interviews, conferences, and noisy field environments.

A quantum simulator for magnetic materials

Physicists at ETH Zurich have developed a new device that uses laser beams and atoms to emulate magnetic materials, enabling the study of exotic forms of magnetism. The approach promises groundbreaking insights into the properties of magnetic materials.

Graphene joins the race to redefine the ampere

A graphene single-electron pump provides a fast enough electron flow to create a current standard, overcoming the Achilles heel of metallic pumps. This innovation marks a major step forward in using graphene to redefine the ampere.

Electron conflict leads to 'bad traffic' on way to superconductivity

Rice physicists Qimiao Si and Rong Yu discovered a new electronic state in which some electrons become frozen, while others remain mobile, leading to 'bad traffic' on the path to superconductivity. This phase, known as orbital-selective Mott phase, provides clues about the fundamental origins of superconductivity.

First data released from the Alpha Magnetic Spectrometer

The Alpha Magnetic Spectrometer (AMS) collaboration has released the first published results from its experiment on the International Space Station, measuring the ratio of positrons to electrons in cosmic rays with unprecedented precision. This key finding may eventually provide evidence for the existence of dark matter.

Nikon Monarch 5 8x42 Binoculars

Nikon Monarch 5 8x42 Binoculars deliver bright, sharp views for wildlife surveys, eclipse chases, and quick star-field scans at dark sites.

Laser empties atoms from the inside out

Researchers at the University of York and Joint Institute for High Temperatures used a petawatt laser to remove deeply bound electrons from atoms, creating a distinctive plasma state. The experiment aims to further understanding of fusion energy generation, which employs hotter plasmas than the Sun.

Electrons are not enough: Cuprate superconductors defy convention

Researchers have found that cuprate superconductors, known for carrying electrical current without resistance, cannot be fully explained by the traditional concept of Luttinger's theorem, which states that electrons carry current. This discovery reveals that there must be alternative explanations beyond electron behavior.

Feynman's double-slit experiment brought to life

Researchers have successfully replicated Feynman's famous double-slit thought-experiment using a gold-coated silicon membrane and a moveable mask. This achievement demonstrates the mysterious properties of electrons, including their ability to produce an interference pattern when fired at the wall one at a time.

Apple iPad Pro 11-inch (M4)

Apple iPad Pro 11-inch (M4) runs demanding GIS, imaging, and annotation workflows on the go for surveys, briefings, and lab notebooks.

Dopants dramatically alter electronic structure of superconductor

Researchers used spectroscopic imaging scanning tunneling microscopy to visualize the electronic properties around individual dopant atoms in an iron-based superconductor. The study found that dopants introduce elongated impurity states that scatter electrons in an asymmetric way, explaining most of the material's unusual properties.

Tiny CREPT instrument to study the radiation belts

CREPT will measure energetic electrons and protons in Van Allen Belts, gaining a better understanding of electron microbursts. The instrument demonstrates two new technologies that make it four times faster than its predecessor.

Rutgers physics professors find new order in quantum electronic material

Rutgers physics professors have discovered a new type of order in an exotic uranium-based material, which may lead to enhanced computer displays and data storage systems. The 'hastatic' order could also enable the creation of more powerful superconducting magnets for medical imaging and high-speed transportation.

Apple MacBook Pro 14-inch (M4 Pro)

Apple MacBook Pro 14-inch (M4 Pro) powers local ML workloads, large datasets, and multi-display analysis for field and lab teams.

Love triumphs over hate to make exotic new compound

Researchers at Northwestern University have created an exotic new chemical compound that links two identical tetracationic rings together using a mechanical bond. The compound's stable organic radical properties make it useful for applications in batteries, semiconductors and electronic memory devices.

Fusion helped by collision science

Researchers applied Deutsch–Märk and Binary-Encounter-Bethe methods to beryllium and its derivatives. The calculations provide improved understanding of electron impact ionization cross sections (EICS) for the ITER fusion chamber.