Bluesky Facebook Reddit Email

Rotator cuff regeneration: potential breakthrough treatment

08.12.22 | University of Connecticut

SAMSUNG T9 Portable SSD 2TB

SAMSUNG T9 Portable SSD 2TB transfers large imagery and model outputs quickly between field laptops, lab workstations, and secure archives.

Tears of the major tendons in the shoulder joint, commonly called the rotator cuff, are common injuries in adults. Advances in surgery have made ever better rotator cuff repairs possible. But failure rates with surgery can be high. Now, a team of researchers from the UConn School of Medicine led by surgeon, engineer and scientist Dr. Cato T. Laurencin reports that a graphene/polymer matrix embedded into shoulder muscle can prevent re-tear injuries.

“Most repairs focus on the tendon,” and how to reattach it to the bone most effectively, Laurencin says. “But the real problem is that the muscle degenerates and accumulates fat. With a tear, the muscle shrinks, and the body grows fat in that area instead. When the tendon and muscle are finally reattached surgically to the shoulder bone, the weakened muscle can’t handle normal stresses and the area can be re-injured again.

Dr. Laurencin along with graduate student Nikoo Shemshaki worked with other UConn Connecticut Convergence Institute researchers to develop a polymer mesh infused with nanoplatelets of graphene. When they used it to repair the shoulders of rats who had chronic rotator cuff tears with muscle atrophy, the muscle grew back. When they tried growing muscle on the mesh in a petri dish in the lab, they found the material seemed to encourage the growth of myotubes, precursors of muscle, and discourage the formation of fat.

“This is really a potential breakthrough treatment for tears of the rotator cuff. It addresses the real problem: muscle degeneration and fat accumulation,” Laurencin says.

The next step in their work is studying the matrix in a large animal. The team looks forward to developing the technology in humans.

This work was funded by NIH National Institute of Arthritis and Musculoskeletal and Skin Diseases Grant No. DP1AR068147 and National Science Foundation Emerging Frontiers in Research and Innovation Grant No. 1332329.

Proceedings of the National Academy of Sciences

10.1073/pnas.220810611

Experimental study

Animals

Muscle degeneration in chronic massive rotator cuff tears of the shoulder: Addressing the real problem using a graphene matrix

8-Aug-2022

University of Connecticut has filed a patent titled "Graphene-Based Nanofibers for Skeletal Muscle Tissue Regeneration" on behalf of the inventors, N.S.S. and C.T.L. C.T.L has the following competing financial interests: Biorez, Globus, HOT, HOT Bone, Kuros Bioscience, NPD, and Cobb (W. Montague) NMA Health Institute. L.S.N. has the following competing financial interest: Biorez.

Keywords

Article Information

Contact Information

Kim Krieger
University of Connecticut
kim.krieger@uconn.edu

Source

How to Cite This Article

APA:
University of Connecticut. (2022, August 12). Rotator cuff regeneration: potential breakthrough treatment. Brightsurf News. https://www.brightsurf.com/news/LVDMZ6XL/rotator-cuff-regeneration-potential-breakthrough-treatment.html
MLA:
"Rotator cuff regeneration: potential breakthrough treatment." Brightsurf News, Aug. 12 2022, https://www.brightsurf.com/news/LVDMZ6XL/rotator-cuff-regeneration-potential-breakthrough-treatment.html.