Bluesky Facebook Reddit Email

Researchers overcome stem cell delivery barrier, paving the way for regenerative medicine

05.08.23 | Xi'an Jiaotong-Liverpool University

AmScope B120C-5M Compound Microscope

AmScope B120C-5M Compound Microscope supports teaching labs and QA checks with LED illumination, mechanical stage, and included 5MP camera.


A recent study has introduced a new method for delivering particles into stem cells, which are notoriously difficult to penetrate. The discovery will make it easier to direct and enhance the processes involved in regenerative medicine.

Regenerative medicine takes advantage of the fact that our body's stem cells can change into many other cell types that are vital for the regeneration of tissue and organs, such as heart or nerve cells.

Each type of cell has specialised properties and functions, so harnessing the potential of stem cell development means that regenerative medicine offers some of the most promising treatments for many diseases.

To control the type of cell the stem cells change into, scientists need to reprogram the cells' genes by inserting genetic information into the stem cell's nucleus, as an operator would adjust railway tracks to change the direction of a train.

However, stem cells have robust protection to stop anything from getting in, similar to our skin, so manipulating the differentiation of stem cells has been problematic.

The researchers have been working to overcome this using rat stem cells and have created a way to bypass the cells' protective barrier.

Dr Gang Ruan, from Xi'an Jiaotong-Liverpool University (XJTLU) , China, and a corresponding author, says: "Our new method means we can deliver genetic information to the stem cells more quickly and efficiently and control the kind of cell they become."

Dr Xiaowei Wen, also from XJTLU and a corresponding author, adds: "Being able to control cell differentiation with this new method means we can improve the efficiency of stem cell therapy as we can better control what the cells transform into. This means fewer cells will be wasted, and we will need fewer cells overall to help regenerate or repair damaged tissue and organs.

"This, in turn, brings down the cost and increases the quality of the patient's life as stem cells can be used rather than donor organs which have a limited supply."

Scaffolding solutions

Dr Wen explains why the new technology is needed to take advantage of the unique properties of stem cells.

"As we age, the number of stem cells in our body decreases dramatically. So, to harness their potential to regenerate damaged cell tissue and organs, we need to implant them into the body.

"Unfortunately, the introduced stem cells usually die within about a week once they are in the body, yet can take around four weeks to differentiate into other cell types.

"So, in our lab, we grow stem cells outside the body. Then using our new method, we can insert specific genetic information into the cells using nanoparticles to cause them to change into a particular type of cell.

"Once the cells have differentiated into the target cell type, we put them into the area of the body where there is damaged tissue so that they can help to restore it."

In a previous study, the team identified the bottleneck in the process of delivery of nanoparticles to stem cells. They showed that the nanoparticles got trapped in bubble-like vesicles that prevented them from getting into the stem cell, but it wasn't clear why.

Breached barriers

To understand how to overcome the difficulties posed by the stem cell barrier, the team of researchers studied ways to improve the movement of nanoparticles across the cell membranes, which could carry genetic information that would direct the transformation of a stem cell to its new cell type.

"We tried many methods that have worked in other cell types, and we found that most of these failed miserably, even ones we had high hopes for," Dr Ruan says.

"Eventually, we found that coating the nanoparticles in a type of polymer helped them to get into the stem cells.
"The coated nanoparticles avoided getting trapped in vesicles, unlike the uncoated ones. In fact, they seemed to circumvent the vesicles altogether and enter the cell more directly.

"It actually wasn't a method we expected to be successful."

It's not yet clear why the coating works, but the discovery will help to make the delivery of genetic information to stem cells more efficient so that it is easier to control which cells they become.

However, the team recognises there is a long way to go before this method can be used clinically.

Dr Ruan says: "Not only do we need to further optimise delivery into the cells, but we also need to precisely control when it happens."

"But it's a big step in the right direction."

Discovering through destruction

Although the discovery that it was easier for coated nanoparticles to pass into stem cells has helped to solve the delivery problem, the fundamental question of why stem cells are so difficult to enter remains.

The team, therefore, looked at the barrier surrounding the stem cells, the cell membrane, to see which characteristics gave them such unique properties.

They took stem cell samples from six rats and used a device called a sonicator, like a mini pneumatic drill, to break up the cells, then measured the amount of damage.

They found that stem cell membranes were more difficult to break when compared to other cell types that are easier to transfer genetic information into.

"Stem cell membranes seemed more robust than other cell types when sonicated. The preliminary results of the study also show that the stem cells contain more cholesterol in their cell membranes," says Dr Ruan.

"This extra cholesterol makes the membrane more rigid, similar to the problems caused by cholesterol in our blood vessels. This may be why it is so difficult for nanoparticles to pass through the membrane of stem cells, though much more research is required to confirm this."

Although the results are preliminary, this understanding of stem cell properties will further aid the development of stem cell delivery using coated nanoparticles and the optimisation of future regenerative therapies.

Nano Letters

10.1021/acs.nanolett.2c04834

Experimental study

Cells

Mechanism-Driven Technology Development for Solving the Intracellular Delivery Problem of Hard-To-Transfect Cells

27-Mar-2023

The authors declare no competing financial interest.

Keywords

Adult Stem Cells Bioactivity Biochemistry Blood Diseases Bone Diseases Bone Marrow Transplantation Cancer Stem Cells Cardiac Regeneration Cell Cultures Cell Development Cell Differentiation Cell Fractionation Cell Membranes Cell Sorting Cell Structure Cell Therapies Cell Transplantation Cell Viability Assays Cells Cellular Reprogramming Chemistry Cholesterol Cytometry Direct Visualization Dna Drug Design Drug Development Drug Discovery Drug Studies Drug Targets Drug Therapy Embryonic Stem Cells Facs Analysis Flow Cytometry Fluid Mosaic Model Fluorescence Microscopy Gene Delivery Gene Editing Gene Targeting Gene Therapy Genetic Engineering Genetic Material Genetic Medicine Genetic Methods Genetic Technology Genetics Hematopoietic Stem Cells High Resolution Imaging Human Genetics Imaging Immune Response Immunoassays Immunogenetics Laboratory Procedures Life Sciences Medical Genetics Medical Imaging Medical Technology Medical Treatments Medicinal Chemistry Membrane Lipids Membrane Proteins Mesenchymal Stem Cells Microscopy Molecular Biology Molecular Genetics Molecular Imaging Molecular Targets Nanomaterials Nanomedicine Nanoparticles Nerve Tissue Neural Stem Cells Organ Transplantation Personalized Medicine Pharmacogenetics Pharmacokinetics Pharmacology Phospholipids Pluripotent Stem Cells Polymer Chemistry Regenerative Medicine Research Methods Single Molecule Analysis Single Molecule Imaging Stem Cell Development Stem Cell Differentiation Stem Cell Fate Stem Cell Implantation Stem Cell Lines Stem Cell Research Stem Cell Self Renewal Stem Cell Therapy Time Lapse Imaging Time Lapse Microscopy Tissue Damage Tissue Engineering Tissue Regeneration Two Photon Microscopy Viability Assays

Article Information

Contact Information

Catherine Diamond
Xi'an Jiaotong-Liverpool University
catherine.diamond@xjtlu.edu.cn

Source

How to Cite This Article

APA:
Xi'an Jiaotong-Liverpool University. (2023, May 8). Researchers overcome stem cell delivery barrier, paving the way for regenerative medicine. Brightsurf News. https://www.brightsurf.com/news/1ZZ2RXY1/researchers-overcome-stem-cell-delivery-barrier-paving-the-way-for-regenerative-medicine.html
MLA:
"Researchers overcome stem cell delivery barrier, paving the way for regenerative medicine." Brightsurf News, May. 8 2023, https://www.brightsurf.com/news/1ZZ2RXY1/researchers-overcome-stem-cell-delivery-barrier-paving-the-way-for-regenerative-medicine.html.